Variable selection via quantile regression with the process of Ornstein-Uhlenbeck type  

在线阅读下载全文

作  者:Yinfeng Wang Xinsheng Zhang 

机构地区:[1]School of Statistics and Mathematics,Shanghai Lixin University of Accounting and Finance,Shanghai,201209,China [2]Department of Statistics,Fudan University,Shanghai,200433,China

出  处:《Science China Mathematics》2022年第4期827-848,共22页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11801355 and 11971116).

摘  要:Based on the data-cutoff method,we study quantile regression in linear models,where the noise process is of Ornstein-Uhlenbeck type with possible jumps.In single-level quantile regression,we allow the noise process to be heteroscedastic,while in composite quantile regression,we require that the noise process be homoscedastic so that the slopes are invariant across quantiles.Similar to the independent noise case,the proposed quantile estimators are root-n consistent and asymptotic normal.Furthermore,the adaptive least absolute shrinkage and selection operator(LASSO)is applied for the purpose of variable selection.As a result,the quantile estimators are consistent in variable selection,and the nonzero coefficient estimators enjoy the same asymptotic distribution as their counterparts under the true model.Extensive numerical simulations are conducted to evaluate the performance of the proposed approaches and foreign exchange rate data are analyzed for the illustration purpose.

关 键 词:adaptive LASSO composite quantile regression data-cutoff method process of Ornstein-Uhlenbeck type quantile regression 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象