Contrasting effects of space and environment on functional and phylogenetic dissimilarity in a tropical forest  被引量:5

在线阅读下载全文

作  者:Mengesha Asefa Calum Brown Min Cao Guocheng Zhang Xiuqin Ci Liqing Sha Jie Li Luxiang Lin Jie Yang 

机构地区:[1]Key Laboratory of Tropical Forest Ecology,Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences,666303 Yunnan,China [2]Karlsruhe Institute of Technology,Institute of Meteorology and Climate Research,Atmospheric Environmental Research(IMK-IFU),Kreuzeckbahnstraße 19,82467 Garmisch-Partenkirchen,Germany

出  处:《Journal of Plant Ecology》2019年第2期314-326,共13页植物生态学报(英文版)

基  金:National Natural Science Foundation of China(31400362 and 31670442);the National Key Basic Research Program of China(2014CB954100);the West Light Foundation of the Chinese Academy of Sciences and the Chinese Academy of Sciences Youth Innovation Promotion Association(2016352);the Applied Fundamental Research Foundation of Yunnan Province(2014GA003).

摘  要:Aims The evolutionary history and functional traits of species can illumi-nate ecological processes supporting coexistence in diverse forest communities.However,little has been done in decoupling the rela-tive importance of these mechanisms on the turnover of phylogenetic and functional characteristics across life stages and spatial scales.Therefore,this study aims to estimate the contribution of environment and dispersal on the turnover of phylogenetic and functional diversity across life stages and spatial scales,in order to build a coherent pic-ture of the processes responsible for species coexistence.Methods We conducted the study in Xishuangbanna Forest Dynamics Plot in Yunnan Province,southwest China.We used four different spatial point process models to estimate the relative importance of disper-sal limitation and environmental filtering.The functional traits and phylogenetic relationships of all individual trees were incorporated in the analyses to generate measures of dissimilarity in terms of pair-wise and nearest-neighbor phylogenetic and functional characteris-tics across life stages and spatial scales.Important Findings We found non-random patterns of phylogenetic and functional turnover across life stages and spatial scales.Environmental filtering structured pairwise phylogenetic and functional beta diversity across spatial scales,while dispersal limitation alone,and in combination with environment filtering,shaped nearest neighbor phylogenetic and functional beta diversity.The relative importance of dispersal limitation and environmental filtering appeared to change with life stage but not with spatial scale.Our findings suggest that phylogenetic and functional beta diversity help to reveal the ecological processes responsible for evolu-tionary and functional assembly and highlight the importance of using a range of different metrics to gain full insights into these processes.

关 键 词:community assembly functional beta diversity life stage phylogenetic beta diversity spatial point pattern 

分 类 号:F42[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象