检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龚津南 杨卓儒 李露 蒋宇超[2] 董德波 邵俊明[3] 尧德中[2] 罗程[2] Gong Jinnan;Yang Zhuoru;Li Lu;Jiang Yuchao;Dong Debo;Shao Junming;Yao Dezhong;Luo Cheng(School of Computer Science,Chengdu University of Information Technology,Chengdu 610225,China;The Clinical Hospital of Chengdu Brain Science Institute,University of Electronic Science and Technology of China,Chengdu 611731,China;School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]成都信息工程大学计算机学院,成都610225 [2]电子科技大学成都脑科学研究院临床医院,成都611731 [3]电子科技大学计算机科学与工程学院,成都611731
出 处:《中国生物医学工程学报》2022年第1期108-113,共6页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金重点项目(61933003);国家自然科学基金青年项目(62003058);四川省科技支撑项目(2021YJ0165)。
摘 要:慢性精神分裂症患者临床表现上常以阴性症状为主,也是精神残疾的主要因素,极大影响了患者的生存质量。迄今为止,阴性症状产生神经机制仍然不明晰,导致其难以被有效控制。对近年来阴性症状相关脑影像研究进行综述,包括以丘脑和纹状体为主的皮层下区域的受损与精神分裂症的发生,皮层下-皮层回路异常与精神分裂症阴性症状等。对拓扑连接这一新方法在精神分裂症阴性症状发生机制研究中的应用进行展望,如对纹状体-丘脑-前额叶环路的多巴胺能神经递质系统的耦合性,空间分布信息(连接的拓扑特性)的解构等。利用深度学习技术可以进一步对阴性症状关键脑连接的拓扑特征进行解码,有望为探索精神分裂症阴性症状提供潜在的研究手段。Patients with chronic schizophrenia have negative symptoms as the main clinical manifestations,which are also the main factor of mental disability,has a great effect on the life quality of patients.So far,the neural mechanism of negative symptoms is still unclear,making it hard to be controlled.This article reviewed the research progress in different aspects in this field,including the occurrence of schizophrenia associated to the damage of subcortical regions(the striatum and thalamus),and the abnormality of the subcortex-cortical connectivity associated to negative symptoms.This article also proposed the perspectives of the new method(reconstruction of topological brain connection)in the study of the mechanism of negative symptoms of schizophrenia,such as exploring the coupling of the dopaminergic neurotransmitter system of the striatum-thalamus-prefrontal loop,and the deconstruction of spatial distribution information.In addition,the application of deep learning can further decode the topological features of the critical brain connections relate to negative symptoms,which is expected to become a potentially approach to explore the mechanism of negative symptoms of schizophrenia.
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.93.255