UNDERSTANDING SCHUBERT'S BOOK(Ⅲ)  

在线阅读下载全文

作  者:Banghe LI 李邦河(KLMM,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China)

机构地区:[1]KLMM,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Acta Mathematica Scientia》2022年第2期437-453,共17页数学物理学报(B辑英文版)

基  金:supported by National Center for Mathematics and Interdisciplinary Sciences,CAS。

摘  要:In§13 of Schubert’s famous book on enumerative geometry,he provided a few formulas called coincidence formulas,which deal with coincidence points where a pair of points coincide.These formulas play an important role in his method.As an application,Schubert utilized these formulas to give a second method for calculating the number of planar curves in a one dimensional system that are tangent to a given planar curve.In this paper,we give proofs for these formulas and justify his application to planar curves in the language of modern algebraic geometry.We also prove that curves that are tangent to a given planar curve is actually a condition in the space of planar curves and other relevant issues.

关 键 词:Hilbert problem 15 enumeration geometry coincidence formula 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象