THE SUBORDINATION PRINCIPLE AND ITS APPLICATION TO THE GENERALIZED ROPER-SUFFRIDGE EXTENSION OPERATOR  

在线阅读下载全文

作  者:Jianfei WANG Xiaofei ZHANG 王建飞;张晓飞(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China;School of Mathematics and Statistics,Pingdingshan University,Pingdingshan 467000,China)

机构地区:[1]School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China [2]School of Mathematics and Statistics,Pingdingshan University,Pingdingshan 467000,China

出  处:《Acta Mathematica Scientia》2022年第2期611-622,共12页数学物理学报(B辑英文版)

基  金:partially supported by the NationalNatural Science Foundation of China(12071161,11971165,11701307);the Natural Science Foundation of Fujian Province(2020J01073)。

摘  要:This note is devoted to applying the principle of subordination in order to explore the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator with special analytic properties.First,we prove that both the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator preserve subordination.As applications,we obtain that if β∈[0,1],γ∈[0,1/r]and β+γ≤1,then the Roper-Suffridge extension operator Φ_(β+γ)(f)(z)=(f(z_(1)),(f(z_(1))/z_(1))^(β)(f’(z_(1)))^(γ)w),z∈Ω_(p,r) preserves an almost starlike mapping of complex order λ on Ω_(p,r)={z=(z_(1),w)∈C×X:|z_(1)|^(p)+‖w‖_(X)^(r)<1},where 1≤p≤2,r≥1 and X is a complex Banach space.Second,by applying the principle of subordination,we will prove that the Pfaltzgraff-Suffridge extension operator preserves an almost starlike mapping of complex order λ.Finally,we will obtain the lower bound of distortion theorems associated with the Roper-Suffridge extension operator.This subordination principle seems to be a new idea for dealing with the Loewner chain associated with the Roper-Suffridge extension operator,and enables us to generalize many known results from p=2 to 1≤p≤2.

关 键 词:Biholomorphic mappings starlike mappings SUBORDINATION Loewner chain 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象