检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun WANG Zhenlong CHEN 王军;陈振龙(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China;School of Mathematics and Finance,Chuzhou University,Chuzhou 239000,China)
机构地区:[1]School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China [2]School of Mathematics and Finance,Chuzhou University,Chuzhou 239000,China
出 处:《Acta Mathematica Scientia》2022年第2期653-670,共18页数学物理学报(B辑英文版)
基 金:supported by National NaturalScience Foundation of China(11971432);Natural Science Foundation of Zhejiang Province(LY21G010003);First Class Discipline of Zhejiang-A(Zhejiang Gongshang University-Statistics);the Natural Science Foundation of Chuzhou University(zrjz2019012)。
摘 要:Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations.
关 键 词:Hitting probability multiple intersection anisotropic random field capacity Hausdorff dimension stochastic fractional heat equations
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.97.68