检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shaoyong HE Jiecheng CHEN 何少勇;陈杰诚(Department of Mathematics,Huzhou University,Huzhou 313000,China;Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China)
机构地区:[1]Department of Mathematics,Huzhou University,Huzhou 313000,China [2]Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China
出 处:《Acta Mathematica Scientia》2022年第2期690-714,共25页数学物理学报(B辑英文版)
基 金:Supported by Zhejiang Provincial Natural ScienceFoundation of China(LQ22A010018);National Natural Science Foundation of China(12071437)。
摘 要:The purpose of this paper is to introduce bi-parameter mixed Lipschitz spaces and characterize them via the Littlewood-Paley theory.As an application,we derive a boundedness criterion for singular integral operators in a mixed Journéclass on mixed Lipschitz spaces.Key elements of the paper are the development of the Littlewood-Paley theory for a special mixed Besov spaces,and a density argument for the mixed Lipschitz spaces in the weak sense.
关 键 词:Mixed Lipschitz spaces Littlewood-Paley theory singular integral operators
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.83.1