检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨星浩 苏伟[1] 蒋长胜[1] 边银菊[1] YANG XingHao;SU Wei;JIANG ChangSheng;BIAN Yinju(Institute of Geophysics,China Earthquake Administration,Beijing 100081,China)
出 处:《地球物理学进展》2022年第1期78-93,共16页Progress in Geophysics
基 金:国家科技基础资源调查专项(2018FY100504);中国地震局地球物理研究所基本科研业务费专项项目(DQJB21B39)联合资助。
摘 要:次声是履行全面禁止核试验条约(CTBT)核查任务的四种监测手段之一,随着CTBT国际监测系统(IMS)次声监测网络的全球规模化建设,以及具有在大气中传播距离远且不易衰减等明显优势,次声在除核试验监测外的其他领域逐渐发挥重要作用.为准确把握当前次声的机理研究、监测技术发展、应用现状以及未来发展趋势,本文系统地总结了次声波的激发机理和监测应用现状.获得的主要认识包括:各类固定源和移动源的次声激发机理与信号特征差异巨大;次声传播受到大气时变状态影响,目前可利用射线追踪等几何声学方法以及全波方法进行传播模拟;目前广泛采用四元或更多子台的小孔径次声台阵、管阵降噪系统等建设方式,以及采用PMCC和BISL等算法进行检测识别和关联定位;次声在核爆炸、化学爆炸、地震、火山、流星体、泥石流、雪崩等领域的监测预测预警以及大气遥感中正在发挥关键作用.此外,目前次声监测技术也面临诸多挑战,包括大气时空变化给次声监测带来较大的不确定性、稀疏台站分布和风噪声问题限制了次声监测能力、时频信号对获得精细动力学参数的局限性等问题.未来发展精细化的大气模型、建设真正全球覆盖和立体覆盖的次声监测系统将可能成为新的研究趋势,这也将促进次声波在地球系统科学研究中发挥重要作用.Infrasound is one of the four monitoring methods to fulfill the verification mission of the Comprehensive Nuclear Test Ban Treaty. With the large-scale construction of the global IMS infrasound network, alone with its lack of significant attenuation even after traveling thousands of kilometers, infrasound has gradually been playing an important role in fields besides nuclear test monitoring. In order to accurately grasp the current research of excitation mechanism, monitoring technology development, application status and future development trend, this paper systematically summarizes the excitation mechanism of infrasound and corresponding application research. The main points are as follows: excitation mechanism of infrasound for fixed and moving sources and their signal characteristics are very different;infrasound propagation in the atmosphere is affected by spatiotemporal variability of the atmosphere(e.g., the seasonal variations, the internal gravity wave)and modeled by geometric acoustic/ray tracing and full wave methods;small aperture infrasound arrays with four elements or more, equipped with pipe array noise reduction systems, are widely used in the design and establishment of infrasound networks;data processing algorithms such as PMCC and BISL have been developed for detection, association and location;infrasound is playing a key role in atmospheric remote sensing and the monitoring, prediction and early warning of nuclear explosions, chemical explosions, earthquakes, volcanoes, meteoroids, debris flows and avalanches. However, infrasound monitoring technology also faces many challenges, such as the spatial and temporal variability of the atmosphere that brings great uncertainty to infrasound monitoring, sparsely distributed stations and wind noise problem that limit the infrasound monitoring capability, and the limitation of time-frequency signal obtaining fine source dynamic parameters. In the future, the development of fine atmospheric models and the construction of truly global coverage and three-d
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26