一种端到端弱监督学习网络模型的中国画情感识别  被引量:4

Chinese Paintings Emotion Recognition Based on End-to-end Weakly Supervised Learning Network Model

在线阅读下载全文

作  者:卢克斌 殷守林[3,4] LU Ke-bin;YIN Shou-lin(College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China;Sanmenxia Polytechnic, Sanmenxia 472000, China;School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;Institute of Imaging and Information Technology, Harbin Institute of Technology, Harbin 150001, China)

机构地区:[1]河南科技大学应用工程学院,河南三门峡472000 [2]三门峡职业技术学院,河南三门峡472000 [3]哈尔滨工业大学电子与信息工程学院,哈尔滨150001 [4]哈尔滨工业大学图像与信息技术研究所,哈尔滨150001

出  处:《哈尔滨理工大学学报》2022年第1期69-78,共10页Journal of Harbin University of Science and Technology

基  金:国家自然科学基金(61771170);河南省社会科学界联合会基金(SKL-2020-87);国防工业技术发展计划指导项目(JCKY2019603C005).

摘  要:情感识别是计算机视觉研究中的一个热点,研究中国画表现的情感对于作品鉴赏工作具有重要意义。为了提高识别性能,针对传统卷积神经网络用于提取中国画的局部区域信息会导致有效信息丢失的问题,文章提出一种基于端到端弱监督学习网络方法对中国画情感进行识别。提出的学习网络由2个分类模块和1个情感强度预测模块组成。首先,在改进特征金字塔网络的基础上构建强度预测通道,提取多层次特征。使用基于梯度的类激活映射技术从第一个分类通道生成伪强度映射图,以指导提出的网络进行情感强度学习。将预测的强度图输入到第二分类通道中进行最终的中国画情感识别。最后,在公开数据集上对提出的方法进行了验证,实验结果表明,所提出的网络就混淆矩阵、平均分类准确率、平均情感识别率分别提高了10%,15%和13%。Emotion recognition research is a hot spot in computer vision,and the study of Chinese painting emotion is of great significance to the appreciation of works.In order to improve the recognition performance,the traditional convolutional neural network used to extract local information of Chinese painting will lead to the loss of effective information.Therefore,the end-to-end weakly supervised learning network is proposed to recognize the Chinese painting emotion.The proposed learning network consists of two classification modules and one affective intensity prediction module.First,the intensity prediction flow is constructed on the basis of improved feature pyramid network to extract multi-level features.The gradient-based class activation map technique is used to generate pseudo-intensity maps from the first classification stream to guide the emotional intensity learning of the proposed network.The predicted intensity map is input into the second classification stream for the final Chinese painting emotion recognition.Finally,the proposed method is verified on the open data set.The experiment results show that the proposed network has improved the confounding matrix,average classification accuracy and average emotion recognition rate by 10%,15%and 13%respectively.

关 键 词:中国画情感识别 端到端弱监督学习网络 情感强度图 基于梯度的类激活映射 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象