检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Libin Liu Yanping Chen Ying Liang
机构地区:[1]School of Mathematics and Statistics,Nanning Normal University,Nanning 530023,China [2]School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China
出 处:《Journal of Computational Mathematics》2022年第2期258-274,共17页计算数学(英文)
基 金:This work is supported by the State Key Program of National Natural Science Foundation of China(11931003);National Science Foundation of China(41974133,11761015,11971410);the Natural Science Foundation of Guangxi(2020GXNSFAA159010).
摘 要:In this paper,we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay.This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived.Based on the a priori error bound and mesh equidistribution principle,we prove that there exists a mesh gives optimal first order convergence which is robust with respect to the perturbation parameter.The a posteriori error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm.Furthermore,we extend our presented adaptive grid algorithm to a class of second-order nonlinear singularly perturbed delay differential equations.Numerical results are provided to demonstrate the effectiveness of our presented monitor function.Meanwhile,it is shown that the standard arc-length monitor function is unsuitable for this type of singularly perturbed delay differential equations with a turning point.
关 键 词:Delay Volterra integro-differential equation Singularly perturbed Error analysis Monitor function
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42