检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高璐 翟士贤 孙晗 陈同生 Gao Lu;Zhai Shixian;Sun Han;Chen Tongsheng(MOE Key Laboratory of Laser Life Science&Institute of Laser Life Science,College of Biophotonics,South China Normal University,Guangzhou,Guangdong 510631,China;Guangdong Provincial Key Laboratory of Laser Life Science,College of Biophotonics,South China Normal University,Guangzhou,Guangdong 510631,China)
机构地区:[1]华南师范大学生物光子学研究院教育部激光生命科学重点实验室,广东广州510631 [2]华南师范大学生物光子学研究院广东省激光生命科学重点实验室,广东广州510631
出 处:《中国激光》2022年第5期122-129,共8页Chinese Journal of Lasers
基 金:国家自然科学基金(61875056,62135003);广州市科学技术计划(2019050001)。
摘 要:QuanTi-FRET是一种通过对多种荧光共振能量转移(FRET)标准质粒样本进行多次FRET成像来测量FRET成像系统敏化淬灭转化因子(G)和供受体通道激发效率校正因子(β)的方法。本课题组发展了一种基于一次成像测量系统校正因子G和β的智能型QuanTi-FRET方法———AutoQT-FRET方法。AutoQT-FRET方法包括如下4个步骤:1)将分别转染了不同FRET标准串联质粒(C5V、C17V、C32V和CTV)的细胞合并到一个细胞培养皿中培养,对该皿细胞样本进行三通道FRET成像;2)对三通道图像进行区域划分,并根据不同种类的FRET标准质粒对各区域进行归类;3)对归类成功的区域逐像素绘制三维空间散点图,以确定各个FRET标准质粒的标准线;4)使用确定好的各质粒标准线对整个视野内的细胞区域进行质粒分类与系统校正因子G和β的测量。该方法大幅简化了系统校正因子的测量过程,缩短了测量时间。本文比较了AutoQT-FRET方法与其他方法测量系统校正因子的优劣,实验结果表明:AutoQT-FRET方法操作简单,而且测量稳定性与准确度都有所提高。Objective Quantitative fluorescence resonance energy transfer(FRET) is an important technology that can be used to study molecular interactions in living cells, analyze the molecular structure of oligomerized proteins, and study regulatory mechanisms between proteins in signal pathways. A prerequisite for quantitative FRET detection technology is determining the correction factor of the FRET measurement system. Among many system calibration factors, the system calibration factor(G) related to the inherent performance of the instrument and fluorescent molecules is particularly important. However, traditional methods, such as the donor-dequenching method, TP-G method, and two hybrid-multi plasmid methods, are cumbersome. The QuanTi-FRET method can measure the sensitized quenching transition factor(G) and the donor and the acceptor excitation correction factor(β) of a FRET imaging system by performing multiple FRET imaging for different types(≥3) of standard FRET plasmid samples. However, this method is challenged by the difficulty in switching multi-dish cells to measure different types(≥3) of standard FRET plasmid samples and thus ensuring the same contrast and background signals when imaging multi-dish cell samples separately. In this study, we have developed an automatic QuanTi-FRET method(AutoQT-FRET) to measure the G and β factors by measuring cells that express multiple FRET standard plasmids with different FRET efficiencies in a cell petri dish. We hope that our method can be helpful for researchers using quantitative FRET technology.Methods In this study, quantitative FRET and living-cell fluorescence imaging were performed using our multimodal FRET microscopy imaging system, mainly consisting of an inverted wide-field fluorescence microscope(IX73, Olympus, Japan) and a high-sensitivity CMOS camera(ORCA-Flash 4.0, Hamamatsu, Japan). The Auto QT-FRET method contains four steps:(1) Combine the cells transfected with different types of FRET standard tandem plasmids(C5V, C17V, C32V, and CTV) into one cell
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.120.1