基于多核Boosting特征组合的高光谱影像分类  

在线阅读下载全文

作  者:张梦顺 郭连坤 ZHANG Mengshun;GUO Liankun

机构地区:[1]合肥市测绘设计研究院,安徽合肥230000 [2]西安天目测绘地理信息有限公司,陕西西安710054

出  处:《信息技术与信息化》2022年第3期130-133,共4页Information Technology and Informatization

摘  要:针对高光谱数据多特征组合问题,提出了一种在多核学习框架下利用多核Boosting实现特征组合最优和异质互补的高光谱影像分类算法。此算法充分利用了高光谱遥感数据的光谱特征和空间特征,在大量的影像属性和分类器中实现最优分类,以充分利用遥感数据的互补信息。多核Boosting算法是对常用的多特征组合方法的拓展,与传统的多核学习方法不同,该方法是在多核学习的基础上将高光谱图像的光谱域和空间域信息投影到不同核空间中形成核矩阵,然后将核矩阵转化成弱支持向量机分类器组,最后利用Boosting算法对不同给定特征的弱分类器进行学习得到不同权重的强分类器,从而将特征与分类器结合。最终分类精度可以提高5%~6%,实现多特征优势组合。

关 键 词:高光谱影像分类 多核Boosting学习 空间-光谱特征组合 弱分类器 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象