基于GNSS数据的多源地质空间数据库更新模型效率分析  被引量:1

Analysis on the efficiency of updating model of multi source geospatial database based on GNSS data

在线阅读下载全文

作  者:曹佳敏 卢春阳 CAO Jiamin;LU Chunyang(Zhejiang Academy of Surveying and Mapping Science and Technology,Hangzhou,Zhejiang,310000,China)

机构地区:[1]浙江省测绘科学技术研究院,浙江杭州310000

出  处:《测绘技术装备》2022年第1期45-49,共5页Geomatics Technology and Equipment

摘  要:基于野外调查法结合ArcGIS软件的传统数据更新模型,缺乏对空间数据关联规则的挖掘,导致数据库更新速度较慢。为改进上述不足,本研究设计出一种基于GNSS数据的多源地质空间数据库更新模型,并对该模型进行效率分析。首先,将数据信息进行空间坐标转换,根据转换结果,提取多源地质空间数据关联规则;其次,基于GNSS数据构建数据库更新模型。试验结果表明,与野外调查法、遥感调查等传统数据更新模型相比,本研究所构建的数据库更新模型在1∶50000、1∶100000和1∶200000比例尺地质空间条件下的平均更新速度分别为0.1987 s、3.3159 s和27.4401 s,均小于两种传统数据更新模型,说明将GNSS数据融入传统数据更新模型后,更新效率更高。The traditional data update model based on field investigation and ArcGIS software lacks the mining of spatial data association rules,resulting in slow database updating.In order to overcome the above shortcomings,this study designs a multi source geospatial database update model based on GNSS data,and analyzes the efficiency of the model.Firstly,the data information is transformed into spatial coordinates,and the association rules of multi source geospatial data are extracted according to the transformation results.And then the database update model is constructed based on GNSS data.The experimental results show that,compared with the traditional data update models,such as field survey method and remote sensing survey,the average updating speed of the database updating model constructed in this study is 0.1987 s,3.3159 s and 27.4401 s respectively under the geospatial conditions of 1∶50000,1∶100000 and 1∶200000 scales,which are less than those of the two traditional data updating models,indicating that GNSS data integrated into the traditional data updating model can achieve higher efficiency.

关 键 词:GNSS数据 地质空间 数据库 更新模型 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象