Resource and waste quantification scenarios for wind turbine decommissioning in the United Kingdom  

在线阅读下载全文

作  者:Kiran Tota‑Maharaj Alexander McMahon 

机构地区:[1]Department of Civil Engineering,Aston Infrastructure and Sustainable Engineering School,College of Engineering and Physical Sciences,Aston University Birmingham,Aston Triangle,Birmingham B47ET,UK [2]AECOM,Bristol BS16NA,UK

出  处:《Waste Disposal and Sustainable Energy》2021年第2期117-144,共28页废弃物处置与可持续能源(英文)

摘  要:Wind power produces more electricity than any other form of renewable energy in the United Kingdom(UK)and plays a key role in decarbonisation of the grid.Although wind energy is seen as a sustainable alternative to fossil fuels,there are still several environmental impacts associated with all stages of the lifecycle of a wind farm.This study determined the material composition for wind turbines for various sizes and designs and the prevalence of such turbines over time,to accurately quantify waste generation following wind turbine decommissioning in the UK.The end of life stage is becoming increasingly important as a rapid rise in installation rates suggests an equally rapid rise in decommissioning rates can be expected as wind turbines reach the end of their 20-25-year operational lifetime.Waste data analytics were applied in this study for the UK in 5-year intervals,stemming from 2000 to 2039.Current practices for end of life waste management procedures have been analysed to create baseline scenarios.These scenarios have been used to explore potential waste management mitigation options for various materials and components such as reuse,remanufacture,recycling,and heat recovery from incineration.Six scenarios were then developed based on these waste management options,which have demonstrated the significant environmental benefits of such practices through quantification of waste reduction and greenhouse gas(GHG)emissions savings.For the 2015-2019 time period,over 35 kilotonnes of waste are expected to be generated annually.Overall waste is expected to increase over time to more than 1200 kilotonnes annually by 2039.Concrete is expected to account for the majority of waste associated with wind turbine decommissioning initially due to foundations for onshore turbines accounting for approximately 80%of their total weight.By 2035-2039,steel waste is expected to account for almost 50%of overall waste due to the emergence of offshore turbines,the foundations of which are predominantly made of steel.

关 键 词:Wind power Energy infrastructure Waste management Turbine decommissioning Life cycle Greenhouse gas emissions(GHG) 

分 类 号:TM614[电气工程—电力系统及自动化] X773[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象