检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷力 戴磊 张秋霞[1] 黎韫 卜军[4] 修建成[1,2] LEI Li;DAI Lei;ZHANG Qiuxia;LI Yun;PU Jun;XIU Jiancheng(Department of Cardiology,Nanfang Hospital,Southern Medical University,Guangzhou,510515,China;Department of Cardiology,Nanfang Hospital Zengcheng Branch;Department of Public Health,Zengcheng Xintang Hospital in Guangzhou;Department of Cardiology,Renji Hospital,School of Medicine,Shanghai Jiao Tong University)
机构地区:[1]南方医科大学南方医院心血管内科,广州510515 [2]南方医院增城分院心血管内科 [3]广州市增城区新塘医院公共卫生管理科 [4]上海交通大学医学院附属仁济医院心血管内科
出 处:《临床心血管病杂志》2022年第3期216-221,共6页Journal of Clinical Cardiology
基 金:国家重点研发计划资助(No:2018YFC1312803);国家自然科学基金面上项目(No:81974266)。
摘 要:目的:面向基层重点监测人群(老年人、高血压患者和糖尿病患者),构建简易、可靠的新发心房颤动(房颤)风险预警模型。方法:纳入2015年1月—2020年12月在广州市增城区新塘镇参与国家基本公共卫生服务项目年度体检的8443例受试者,将其按照2∶1的比例随机分配至建模组和验证组,随后建模组将按照随访期间是否新发房颤分为无房颤组和新发房颤组。将两组基线差异变量经Stepwise筛选后,得出模型最终变量,并构建风险列线图。结果:本研究构建的风险预警模型包含3个极易获取的变量(年龄、舒张压、BMI)。无论在建模组还是验证组,该列线图的3、4、5年AUC均达到了0.7以上,校准曲线也体现了良好的一致性。结论:本研究构建的风险预警模型可有效面向基层重点监测人群识别新发房颤高危患者。Objective:To develop a simple and reliable prediction model for incident atrial fibrillation(AF)for intensive monitoring population(elderly,hypertensive patients and diabetic patients)in primary care.Methods:The 8443enrolled subjects who participated were randomly(2:1)assigned to the development cohort and the validation cohort in the annual physical examination of the National Basic Public Health Service Project in Xintang,Zengcheng District,Guangzhou from January 2015to December 2020.Then patients in the development cohort will be further divided into non-AF group and AF group based on whether they developed AF during the follow-up period.Variables that were unbalanced between groups will be screened through a stepwise approach.And,based on the filtered variables,aprediction model was constructed.Results:The prediction model constructed in this study contains only 3easily accessible variables(age,diastolic blood pressure,body mass index).Either in the development cohort or the validation cohort,the 3-,4-,and 5-year AUC of the nomogram reached 0.7or more,and the calibration curve also demonstrated good consistency.Conclusion:Our prediction model can effectively identify at-risk patients of incident AF among intensive monitoring population in primary care setting.
分 类 号:R541.7[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15