检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金龙 曾德智[1] 孟可雨 肖国清[1] 谭四周 张昇 Jin Long;Zeng Dezhi;Meng Keyu;Xiao Guoqing;Tan Sizhou;Zhang Sheng(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,Sichuan;CNOOC(China)China Limited Sshenzhen Branch,Shengzhen,Cuangdong,China;PetroChina Northeast Sales Branch,Langfang,Hebei,China)
机构地区:[1]油气藏及地质开发工程国家重点实验室·西南石油大学 [2]中海石油(中国)中国有限公司深圳分公司 [3]中国石油天然气股份有限公司东北销售分公司
出 处:《石油与天然气化工》2022年第2期70-76,共7页Chemical engineering of oil & gas
基 金:国家自然科学基金面上项目“静载、振动与腐蚀作用下H_2S/CO_(2)气井完井管柱螺纹密封面的力化学损伤机制研究”(51774249)。
摘 要:目的针对海底管道腐蚀影响因素存在信息叠加与相互耦合、作用机理复杂、腐蚀速率预测难度大的问题,提出一种灰狼优化(GWO)算法优化最小二乘支持向量机(LSSVM)的腐蚀速率预测新模型。方法该模型利用灰狼优化算法对最小二乘支持向量机的核参数与惩罚因子进行迭代寻优,减少参数选择的盲目性,提升预测精度,应用该模型对海水挂片腐蚀实验的50组样本进行学习与预测,并与传统最小二乘支持向量机、粒子群优化最小支持向量机进行了预测精度的比较。结果灰狼优化最小二乘支持向量机的平均绝对误差、均方误差、均方根误差均最小,其决定系数更接近于1,说明该模型的预测结果与真实值最接近,算法效率高。结论构建的模型可以用于当前油气工程大数据驱动的腐蚀预测中,其结果可以为海底管道的腐蚀与防护提供决策技术支持。Objective Aiming at the problems of information superposition and mutual coupling of submarine pipeline corrosion factors,complex action mechanisms,and difficult corrosion rate prediction,this article proposes a corrosion rate prediction new model of gray wolf optimization(GWO)algorithm optimized least square support vector machine(LSSVM).Methods The model uses the gray wolf optimization algorithm to iteratively optimize the kernel parameters and penalty factors of the least squares support vector machine to reduce the blindness of parameter selection and improve the prediction accuracy.The model is applied to 50 sets of samples of seawater coupon corrosion experiment.The learning and prediction are carried out,and the prediction accuracy is compared with traditional least square support vector machine and particle swarm optimization minimum support vector machine.Results The average absolute error,mean square error,and root mean square error of the gray wolf optimized least squares support vector machine are all smallest,and the coefficient of determination is closer to 1,which indicate that the prediction result of the model is closest to the real value,and the algorithm efficiency is high.Conclusions The model constructed in this article can be used in the current corrosion prediction driven by big data in oil and gas engineering,and the results can provide a decision-making technical support for the corrosion and protection of submarine pipelines.
关 键 词:海水腐蚀 腐蚀预测 灰狼优化算法(GWO) 最小二乘支持向量机(LSSVM)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38