检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周游[1,2] 张广智 张圣泽[1,2] 刘俊州 韩磊[3] ZHOU You;ZHANG Guangzhi;ZHANG Shengze;LIU Junzhou;HAN Lei(Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China),Qingdao,Shandong 266580,China;School of Geosciences,China University of Petroleum(East China),Qingdao,Shandong 266580,China;SINOPEC Petroleum Exploration and Production Research Institute,Beijing 100083,China)
机构地区:[1]中国石油大学(华东)深层油气重点实验室,山东青岛266580 [2]中国石油大学(华东)地球科学与技术学院,山东青岛266580 [3]中国石油化工股份有限公司石油勘探开发研究院,北京100083
出 处:《石油地球物理勘探》2022年第2期287-296,I0002,共11页Oil Geophysical Prospecting
基 金:国家自然科学基金项目“基于深度学习的深层裂缝储层参数地震反演方法”(42074136);国家自然科学基金企业创新发展联合基金项目“渤海潜山裂缝性储层地震响应机理及精确成像方法”(U19B2008);国家科技重大专项“中西部地区碎屑岩领域勘探关键技术”(2016ZX05002-005);中国石油大学(华东)研究生创新工程项目“基于集成学习的变质岩潜山油气藏裂缝特征参数预测方法研究”(YCX2020014)联合资助。
摘 要:裂缝开度是表征致密储层品质及评价油气产能的关键参数。受沉积、成岩和构造作用的影响,致密储层具有较强的非均质性,导致测井响应特征复杂、无规律,利用常规测井解释方法或者单一机器学习模型很难准确预测储层裂缝开度。为了解决这一问题,提出一种基于层次专家委员会机器模型的致密储层裂缝开度预测方法。首先,从岩心和成像测井资料中获取储层裂缝开度参数,选取相同深度敏感的测井数据作为特征变量构建样本集;然后,采用核岭回归、支持向量回归、BP神经网络作为基础专家网络单元训练、学习样本集;再借助递阶层次结构模型和门神经网络模型构建层次网络模块,自适应生成各个基础专家网络单元的初始权重;最后,综合考虑各个基础专家网络单元的预测性能,利用条件交替期望变换确定各个基础专家网络在最终输出中的贡献,准确预测储层的裂缝开度。实际资料应用表明,该方法能有效地定量表征井中储层裂缝开度,可为致密储层评价提供可靠的地球物理技术支撑。Fracture aperture is a key parameter for characterizing the quality of tight reservoirs and evaluating oil and gas productivity.Tight reservoirs have strong heterogeneity due to the influences of sedimentation,diagenesis,and tectonism,resulting in complex and irregular logging response characteristics.Consequently,it is difficult to accurately predict reservoir fracture aperture by the conventional logging interpretation method or with a single machine learning model.To solve this problem,this paper proposes a prediction method of fracture aperture based on the hierarchical expert committee machine model for tight reservoirs.Firstly,the parameters of reservoir fracture aperture are obtained from core and imaging logging data,and sensitive logging data at same depth are selected as characteristic variables to construct a sample set.Secondly,the kernel ridge regression,support vector regression,and BP neural network are used as the basic expert network units to train and learn the sample set.Thirdly,the initial weight of each basic expert network unit is adaptively generated by hierarchical network modules built with the hierarchical structure model and the gated neural network model.Lastly,the prediction performance of each basic expert network unit is comprehensively considered.The contribution of each basic expert network to the final output is determined by alternating conditional expectation transform,and the fracture aperture of the reservoir is thereby accurately predicted.The practical application shows that this method can effectively quantitatively characterize the reservoir fracture aperture in a well and provide reliable geophysical information for the evaluation of tight reservoirs.
关 键 词:致密油气储层 裂缝开度 层次专家委员会机器 递阶层次结构 门神经网络模型
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.162.245