检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王蓝星 王群明 童小华 WANG Lanxing;WANG Qunming;TONG Xiaohua(College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China;Shanghai Digital Optics Frontier Scientific Research Base, Shanghai 200092, China)
机构地区:[1]同济大学测绘与地理信息学院,上海200092 [2]上海市数字光学前沿科学研究基地,上海200092
出 处:《测绘学报》2022年第4期612-621,共10页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(42171345,41971297)。
摘 要:云遮挡对高光谱影像的应用造成了不可忽视的影响。现有云去除方法通常利用时域近邻的同源影像提供辅助信息。然而,高光谱影像(如GF-5和EO-1高光谱影像)较低的时间分辨率导致同源辅助影像中可能存在较大的地物覆盖变化。时间分辨率更高的多光谱影像(如Landsat 8 OLI影像)能提供时间上更接近于高光谱云影像的辅助信息,从而减少地物覆被变化带来的影响。为应对高光谱和多光谱波段之间差异较大的问题,本文基于空谱随机森林(spatial-spectral-based random forest,SSRF)方法,提出一种利用多光谱影像(Landsat 8 OLI影像)对高光谱影像进行厚云去除的方法,将其简记为SSRF_M。SSRF_M较强的非线性拟合能力使其能够综合利用多光谱影像所有波段的有效数据对各个高光谱波段进行重建。本文使用GF-5和EO-1高光谱影像进行模拟云去除试验,视觉和定量评价结果均表明,与利用时间间隔更长的同源辅助影像的方法相比,本文方法能获得更高精度的云下信息重建结果。The cloud contamination issue poses a significant obstacle to the application of hyperspectral images.Existing cloud removal methods usually use temporally close images from the same sensors as cloudy images to provide auxiliary information.Unfortunately,the coarse temporal resolution of hyperspectral images(GF-5 and EO-1 hyperspectral images)may result in great land cover changes.The finer temporal resolution of multispectral images(Landsat 8 OLI images)allows to provide auxiliary information temporally closer to the hyperspectral cloudy images,thus reducing the effect uncertainty caused by land cover changes.To deal with the large spectral differences between auxiliary multispectral bands and cloud-contaminated hyperspectral bands,this paper applied the spatial-spectral-based random forest(SSRF)method to use multispectral images(Landsat 8 OLI images)for cloud removal of hyperspectral images,namely,the SSRF_M method.Benefiting from the strong nonlinear fitting ability,the proposed SSRF_M method can use simultaneously the effective information from multiple bands of the auxiliary multispectral image for cloud removal of each hyperspectral band.In this paper,the GF-5 and EO-1 hyperspectral images were used for cloud simulation experiments.The visual and quantitative evaluation results show that compared with the strategy using homologous auxiliary images,the proposed SSRF_M method can reconstruct the information under clouds more accurately.
关 键 词:高光谱影像 厚云去除 GF-5 Landsat 8 EO-1 空谱随机森林
分 类 号:P227[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.22.202