检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄晓旗 阴玮灵 王莉[1] 史柯 周婕 梁玉栋 刘亚良 张静平[7] 金晨望[7] 郭佑民[7] HUANG Xiaoqi;YIN Weiling;WANG Li;SHI Ke;ZHOU Jie;LIANG Yudong;LIU Yaliang;ZHANG Jingping;JIN Chenwang;GUO Youmin(Department of Medical Imaging,Affiliated Hospital of Yan′an University,Yan′an 716000,China;Yan′an University,Yan′an 716000,China;不详)
机构地区:[1]延安大学附属医院影像科,陕西延安716000 [2]延安大学,陕西延安716000 [3]安康市人民医院放射科,陕西安康725000 [4]西安市胸科医院放射科,西安710061 [5]渭南市中心医院CT/MR影像诊断科,陕西渭南714000 [6]汉中市中心医院放射科,陕西汉中723000 [7]西安交通大学第一附属医院放射科,西安710061
出 处:《实用医学杂志》2022年第5期527-531,共5页The Journal of Practical Medicine
基 金:陕西省教育厅2020年度突发公共卫生安全专项科学研究计划资助项目(编号:20JG040)。
摘 要:目的探讨基于定量CT构建的诺模图对重症新型冠状病毒肺炎的诊断价值。方法回顾性分析117例新型冠状病毒肺炎(corona virus disease 2019,COVID⁃19)患者的临床和胸部CT资料。所有患者分为轻症组(82例)和重症组(35例)。对两组间差异有统计学意义的临床和定量CT指标进行多因素logistic回归分析,确定重症COVID⁃19相关的独立危险因素,构建诺模图,并通过ROC曲线分析、校准曲线及Hosmer⁃Lemeshow拟合优度检验进行模型验证。结果多因素logistic回归结果显示年龄(OR=1.155,95%CI:1.069~1.247)、淋巴细胞计数与白细胞计数比值(OR<0.001,95%CI:0~0.005)、LeV%(OR=1.136,95%CI:1.013~1.274)、MLeD(OR=1.009,95%CI:1.001~1.018)是重症COVID⁃19的影响因素。绘制诺模图,其ROC曲线下面积为0.969,校准曲线显示预测概率与实际概率符合度良好。Hosmer⁃Lemeshow拟合优度检验(χ^(2)=4.352,P=0.824)显示诺模图诊断重症COVID⁃19具有较好效能。结论基于定量CT构建的诺模图对于重症COVID⁃19的临床诊断具有较好的效能。Objective To explore the efficiency of nomogram based on quantitative CT in prediction of severe corona virus disease 2019(COVID-19). Methods The clinical and chest CT data on 117 COVID-19 patients were retrospectively analyzed. All the patients were divided into a mild group(82 patients)and a severe group(35 patients). Multivariate Logistic regression analysis was performed on the clinical and quantitative CT indexes which had significant differences between the two groups to determine the independent risk factors associated with severe COVID-19. Nomogram was constructed for predicting severe COVID-19,and then verified by ROC analysis,calibration curve and Hosmer-Lemeshow goodness-of-fit test. Results Multivariate logistic regression showed that age,lymphocyte count-to-white blood cell ratio,LeV%,and MLeD were independent risk factors for severe COVID-19. The area under the curve of nomogram was 0.969. The calibration curve showed that the predicted probability was highly concordant with the actual probability. Hosmer-Lemeshow goodness-of-fit test(χ^(2)= 4.352,P = 0.824)showed that nomogram had higher efficiency in predicting severe COVID-19. Conclusions The nomogram based on quantitative CT has better efficiency and application value in predicting severe COVID-19.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.188.218