检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏迪 曾海彬[2] 洪锋 马松 袁田 WEI Di;ZENG Haibin;HONG Feng;MA Song;YUAN Tian(Southwest China Institute of Electronic Technology,Chengdu 610036,China;Beijing Institute of Tracking and Telecommunication Technology,Beijing 100094,China;Unit 63750 of the PLA,Xi an 710043,China;National Key Laboratory of Science and Technology on Communications,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]中国西南电子技术研究所,成都610036 [2]北京跟踪与通信技术研究所,北京100094 [3]中国人民解放军63750部队,西安710043 [4]电子科技大学通信抗干扰技术国家级重点实验室,成都611731
出 处:《电讯技术》2022年第4期450-456,共7页Telecommunication Engineering
摘 要:针对现有通信干扰信号识别方法识别效果不佳的问题,提出了一种基于长短时记忆网络(Long Short-Term Memory,LSTM)和特征融合的通信干扰识别方法。该方法利用LSTM网络提取干扰信号的特征,通过LSTM强大的序列特征提取能力提升干扰信号特征提取的性能;通过提取信号的时域和频域特征后进行特征融合,使用全连接分类器对干扰信号进行分类识别,提升特征提取的完整性和干扰识别的性能。仿真表明,所提方法的干扰识别性能相比于现有的基于卷积神经网络的干扰识别方法提升了6 dB,可用于通信干扰信号类型的识别。For the poor recognition effect of existing communication jamming signals recognition methods,a recognition method based on long short-term memory(LSTM)network and feature fusion is proposed.In this method,the LSTM network is used to extract signal features.With the powerful sequence feature extraction capability of the LSTM network,this method can improve the feature extraction ability of jamming signals.The time-domain and frequency-domain features of the signals are extracted through the feature extraction network,and are fused through the fusion module,and the fusion feature is used to identify the signals through the fully connected classifier,which can improve the integrity of feature extraction and the performance of jamming signals recognition.The simulation results demonstrate that the jamming signals recognition performance of the proposed method is improved by 6 dB compared with the existing jamming signals recognition method based on convolutional neural network,and it can be applied in the recognition of communication jamming signals types.
关 键 词:干扰识别 长短时记忆(LSTM)网络 特征融合 深度学习
分 类 号:TN911.4[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.209.231