检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马景峰 任刚[1] 李豪杰 曹奇 杜建玮 MAJing-feng;REN Gang;LI Hao-jie;CAO Qi;DU Jian-wei(School of Transportation,Southeast University,Nanjing 211189,China)
出 处:《交通运输系统工程与信息》2022年第2期337-348,共12页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(52072068);江苏省研究生科研与实践创新计划项目(KYCX21_0129)。
摘 要:为减少电动自行车与机动车事故造成的损失,定量剖析不同因素对事故严重程度的差异性影响至关重要。基于上虞区2018年10304起电动自行车与机动车事故,分析该类事故的严重性分布情况和时间与空间分布特性。以事故严重性为因变量,将其有序分为未受伤、轻伤及重伤事故3类,从时间、空间、道路、环境、骑行者及车型6个方面,选取17个事故严重性潜在影响因素,采用多项Logit模型、有序Logit模型、广义有序Logit模型及偏比例优势模型进行拟合度对比分析,并以最佳模型(偏比例优势模型)和边际效应,量化分析各因素对事故严重性影响的显著性与差异性。结果表明,除节日类型、车道限速、车流相交角及温度对事故严重性影响不显著外,其余13个因素都有显著影响,事故时间、光线亮度、骑者性别、骑者年龄、车辆类型及电动自行车类型违反平行线假设;对该类事故严重性影响最大的前4个因素为电动自行车类型、机动车类型、骑行者年龄与性别,其边际效应绝对值的最大值均超过61%,事故区位、道路类型及光线亮度的影响较大(20%~30%),事故时间和风力等级影响较小(10%~20%),而季节、事故位置、慢行干扰度和天气状况的影响最小(≤8%)。基于各因素的差异性影响,为交通管理部门提出了有效改善建议。It is critical to quantify the differential influence of different factors on the severity of e-bicycle and motor vehicle crashes in order to mitigate the losses caused by these crashes.Based on the data of 10304 e-bicycle and motor vehicle crashes in Shangyu in 2018,the severity distribution and spatiotemporal characteristics of the crashes were analyzed.As the dependent variable,the crash injury severity levels were coded into three classifications:uninjured,minor injury,and serious injury crashes.A total of 17 contributing factors were selected from six perspectives,i.e.,time,space,road,environment,cyclist,and vehicle type.The multinomial Logit model,the ordered Logit model,the generalized ordered Logit model,and the partial proportional odds model were applied to explore the potential influencing factors by comparing the goodness of fit.The optimal model,i.e.,the partial proportional odds model,as well as the marginal effects was carried out to quantitatively analyze the significance of the contributing factors in the crashes.The results evidenced that,the day type,the speed limit of lanes,intersection angle of traffic flow,and temperature have no significant influence on the crash severity,while the other 13 factors have significant influence.The factors,including crash time,lighting condition,rider gender,rider age and vehicle type,do not comply with the parallel-lines assumption in the crashes.The top four factors with the greatest impacts were e-bicycle type,vehicle type,rider age,and gender.The maximum absolute marginal values all exceeded 61%.Crash area,road type,and lighting condition had moderate impacts(20%~30%),crash time and wind level had less impact(10%~20%),and season,crash location,non-motorized traffic interference,and the weather had minor effects(≤8%).Based on the differences in the influencing factors,effective improvement suggestions had been put forward for the traffic management department.
关 键 词:交通工程 事故严重性 偏比例优势模型 有序LOGIT模型 广义有序Logit模型 多项Logit模型
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49