Symmetry analysis,closed-form invariant solutions and dynamical wave structures of the generalized (3+1)-dimensional breaking soliton equation using optimal system of Lie subalgebra  

在线阅读下载全文

作  者:Monika Niwas Sachin Kumar Harsha Kharbanda 

机构地区:[1]Department of Mathematics,Faculty of Mathematical Sciences,University of Delhi,Delhi,110007,India

出  处:《Journal of Ocean Engineering and Science》2022年第2期188-201,共14页海洋工程与科学(英文)

基  金:The author,Sachin Kumar,is grateful to the Science and Engi-neering Research Board(SERB),DST,India under project scheme Empowerment and Equity Opportunities for Excellence in Science(EEQ/2020/000238)for the financial support in carrying out this research.

摘  要:Nonlinear evolution equations(NLEEs)are primarily relevant to nonlinear complex physical systems in a wide range of fields,including ocean physics,plasma physics,chemical physics,optical fibers,fluid dy-namics,biology physics,solid-state physics,and marine engineering.This paper investigates the Lie sym-metry analysis of a generalized(3+1)-dimensional breaking soliton equation depending on five nonzero real parameters.We derive the Lie infinitesimal generators,one-dimensional optimal system,and geo-metric vector fields via the Lie symmetry technique.First,using the three stages of symmetry reductions,we converted the generalized breaking soliton(GBS)equation into various nonlinear ordinary differential equations(NLODEs),which have the advantage of yielding a large number of exact closed-form solu-tions.All established closed-form wave solutions include special functional parameter solutions,as well as hyperbolic trigonometric function solutions,trigonometric function solutions,dark-bright solitons,bell-shaped profiles,periodic oscillating wave profiles,combo solitons,singular solitons,wave-wave interac-tion profiles,and various dynamical wave structures,which we present for the first time in this research.Eventually,the dynamical analysis of some established solutions is revealed through three-dimensional sketches via numerical simulations.Some of the new solutions are often useful and helpful for study-ing the nonlinear wave propagation and wave-wave interactions of shallow water waves in many new high-dimensional nonlinear evolution equations.

关 键 词:Lie symmetry technique Infinitesimal generators Optimal systems Closed-form wave solutions Solitary waves 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象