基于变分自编码器的实验设计  被引量:1

Design of Experiments Based on Variational Auto-encoder

在线阅读下载全文

作  者:张志博 康达周[1,2,3] ZHANG Zhi-Bo;KANG Da-Zhou(College of Computer Science and Technology/College of Artificial Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Key Laboratory of Safety-Critical Software,Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Collaborative Innovation Center of Novel Software Technology and Industrialization,Nanjing 210023,China)

机构地区:[1]南京航空航天大学计算机科学与技术学院/人工智能学院,南京211106 [2]南京航空航天大学高安全系统的软件开发与验证技术工信部重点实验室,南京211106 [3]软件新技术与产业化协同创新中心,南京210023

出  处:《计算机系统应用》2022年第3期113-121,共9页Computer Systems & Applications

基  金:十三五装备预研共用技术项目(41402020101);基础科研项目(JCKY2020605C003)。

摘  要:针对现有实验设计方法难以对复杂系统进行高效实验设计的问题,本文提出了一种基于变分自编码器的实验设计方法,首先利用实验历史记录数据训练变分自编码器将复杂的实验样本空间编码到一个较为简单的隐变量空间,然后在该隐变量空间里进行取样,最后通过解码器还原产生新的实验样本,完成实验设计.通过对比本文方法与数种基准实验设计方法的结果在拟合直航鱼雷命中模型时的表现情况,表明在取相同样本数的情况下,本文方法可以优化实验设计,提高实验效率.Given that the existing experiment methods are unable to perform the efficient design of experiments for complex systems, this study proposes a design of experiments method based on the variational auto-encoder. First,experimental historical data are used to train the variational auto-encoder to encode the complex experimental sample space into a relatively simple latent variable space. Then, samples are obtained from the latent variable space. Finally, new experimental samples are generated by the decoder through restoration, and the design of experiments is achieved. The performance of the proposed method in fitting the hit model of the straight-running torpedo is compared with those of several benchmark design of experiments methods. It is shown that with the same number of samples, the proposed method can optimize the design of experiments and improve the efficiency of the experiments.

关 键 词:复杂系统 实验设计 变分自编码器 支持向量回归 

分 类 号:TN762[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象