检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:饶姗姗 冷小鹏[1] RAO Shan-Shan;LENG Xiao-Peng(School of Computer and Network Security(Oxford Brookes College),Chengdu University of Technology,Chengdu 610051,China)
机构地区:[1]成都理工大学计算机与网络安全学院(牛津布鲁克斯学院),成都610051
出 处:《计算机系统应用》2022年第3期345-350,共6页Computer Systems & Applications
基 金:四川省科技厅应用基础研究项目(2021YJ0335)。
摘 要:构建个人信用风险评估模型的过程中,特征工程很大程度上决定了评估器的性能,传统的特征选择方法无法全面的考虑高维度指标对评估结果的影响,且大多数研究在构建模型的过程中人为决定特征集大小,导致随机性强、可信度低;基于此,提出基于传统风控指标优化XGBoost的随机森林模型(IV-XGBoostRF),将传统风控指标IV与XGBoost相结合对原始特征集进行筛选,建立较为完善的信用评估模型.通过对比实验的结果显示改进后的随机森林模型准确度提高了0.90%,且其他各项评估指标均优于传统信用评估模型,证明了该组合特征选择方法的可行性,有一定的应用价值.In the process of building a personal credit risk evaluation model,feature engineering largely determines the performance of the evaluator.Traditional feature selection methods cannot fully consider the impact of high-dimensional indicators on the evaluation results,and most studies artificially determines the size of the feature set in the process of building the model,leading to high randomness and low credibility.Therefore,a random forest model(IV-XGBoostRF)based on traditional risk control indicators to optimize XGBoost is proposed.The traditional risk control indicators IV and XGBoost are combined to screen the original feature set to build a relatively complete credit evaluation model.The results of comparison experiments show that the accuracy of the improved random forest model is increased by 0.90%,and other evaluation indicators are better than the traditional credit evaluation model,which proves the feasibility of the feature selection method and has certain application value.
关 键 词:信用评估 信息价值 组合特征选择 随机森林 XGBoost
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.172.7