检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏燕明[1] 甘旭升[2] 程毅东 吴依涵 李胜厚 WEI Yan-ming;GAN Xu-sheng;CHENG Yi-dong;WU Yi-han;LI Sheng-hou(Xijing University,Xi’an 710123,China;Air Traffic Control and Navigation College,Air Force Engineering University,Xi’an 710051,China)
机构地区:[1]西京学院,西安710123 [2]空军工程大学空管领航学院,西安710051
出 处:《火力与指挥控制》2022年第3期129-135,共7页Fire Control & Command Control
摘 要:针对近距与超视距空战的特点,提出一种基于粒子群优化(PSO)算法与极限学习机(ELM)的空战效能评估模型。引入一种基于M估计的ELM,以抵御样本数据中粗差的干扰;采用基于混沌策略的PSO算法优化ELM隐含层的输入权值和偏差,以降低随机选取参数的影响,提升评估模型的精度;利用所建模型对战斗机空战效能进行评估。仿真表明,所提方法仅通过20次迭代就收敛到令人满意的精度,并具较强的抗粗差能力,从而验证了其可行性和有效性。For the characteristics of air combat beyond visual range and within visual range,an air combat effectiveness evaluation model is proposed on the basis of Particle Swarm Optimization(PSO)algorithm and Extreme Learning Machine(ELM).First,an ELM based on M estimation is introduced to resist the interference of gross errors in the sample data.Then the PSO algorithm with chaotic strategy is used to optimize the input weight value and deviation of hidden layer in ELM,which can reduce the impact of random selection of parameters and can improve the accuracy of the evaluation model.Finally,the built model is utilized to evaluate of the effectiveness of air combat of the fighter.The simulation indicates that the proposed method can converge a satisfactory accuracy through only 20 iterations,with strong resistence ability of gross errors.Its feasibility and effectiveness are verified.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.159.67