Pointwise Characterizations of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness and Their Applications  被引量:1

在线阅读下载全文

作  者:Zi Wei LI Da Chun YANG Wen YUAN 

机构地区:[1]Laboratory of Mathematics and Complex Systems(Ministry of Education of China),School of Mathematical Sciences,Beijing Normal University,Beijing 100875,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2022年第4期623-661,共39页数学学报(英文版)

基  金:the National Natural Science Foundation of China(Grant Nos.11971058,12071197 and 11871100);the National Key Research and Development Program of China(Grant No.2020YFA0712900)。

摘  要:In this article,the authors first establish the point wise characterizations of Besov and Triebel-Lizorkin spaces with generalized smoothness on R;via the Hajlasz gradient sequences,which serve as a way to extend these spaces to more general metric measure spaces.Moreover,on metric spaces with doubling measures,the authors further prove that the Besov and the Triebel-Lizorkin spaces with generalized smoothness defined via Hajlasz gradient sequences coincide with those defined via hyperbolic fillings.As an application,some trace theorems of these spaces on Ahlfors regular spaces are established.

关 键 词:Besov space Triebel-Lizorkin space generalized smoothness Hajlasz gradient hyperbolic filling trace 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象