Co-occurrence based texture synthesis  被引量:1

在线阅读下载全文

作  者:Anna Darzi Itai Lang Ashutosh Taklikar Hadar Averbuch-Elor Shai Avidan 

机构地区:[1]Tel Aviv University,Tel Aviv 6997801,Israel [2]Cornell-Tech,Cornell University,NYC,NY,10044,USA

出  处:《Computational Visual Media》2022年第2期289-302,共14页计算可视媒体(英文版)

摘  要:As image generation techniques mature,there is a growing interest in explainable representations that are easy to understand and intuitive to manipulate.In this work,we turn to co-occurrence statistics,which have long been used for texture analysis,to learn a controllable texture synthesis model.We propose a fully convolutional generative adversarial network,conditioned locally on co-occurrence statistics,to generate arbitrarily large images while having local,interpretable control over texture appearance.To encourage fidelity to the input condition,we introduce a novel differentiable co-occurrence loss that is integrated seamlessly into our framework in an end-to-end fashion.We demonstrate that our solution offers a stable,intuitive,and interpretable latent representation for texture synthesis,which can be used to generate smooth texture morphs between different textures.We further show an interactive texture tool that allows a user to adjust local characteristics of the synthesized texture by directly using the co-occurrence values.

关 键 词:CO-OCCURRENCE texture synthesis deep learning generative adversarial networks(GANs) 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象