检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Anna Darzi Itai Lang Ashutosh Taklikar Hadar Averbuch-Elor Shai Avidan
机构地区:[1]Tel Aviv University,Tel Aviv 6997801,Israel [2]Cornell-Tech,Cornell University,NYC,NY,10044,USA
出 处:《Computational Visual Media》2022年第2期289-302,共14页计算可视媒体(英文版)
摘 要:As image generation techniques mature,there is a growing interest in explainable representations that are easy to understand and intuitive to manipulate.In this work,we turn to co-occurrence statistics,which have long been used for texture analysis,to learn a controllable texture synthesis model.We propose a fully convolutional generative adversarial network,conditioned locally on co-occurrence statistics,to generate arbitrarily large images while having local,interpretable control over texture appearance.To encourage fidelity to the input condition,we introduce a novel differentiable co-occurrence loss that is integrated seamlessly into our framework in an end-to-end fashion.We demonstrate that our solution offers a stable,intuitive,and interpretable latent representation for texture synthesis,which can be used to generate smooth texture morphs between different textures.We further show an interactive texture tool that allows a user to adjust local characteristics of the synthesized texture by directly using the co-occurrence values.
关 键 词:CO-OCCURRENCE texture synthesis deep learning generative adversarial networks(GANs)
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147