Towards natural object-based image recoloring  

在线阅读下载全文

作  者:Meng-Yao Cui Zhe Zhu Yulu Yang Shao-Ping Lu 

机构地区:[1]TKLNDST,CS,Nankai University,Tianjin 300350,China [2]Department of Radiology,Duke University,Durham,NC 27705,USA

出  处:《Computational Visual Media》2022年第2期317-328,共12页计算可视媒体(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.61972216 and 62111530097);NSF of Tianjin City(Grant Nos.18JCYBJC41300 and 18ZXZNGX00110).

摘  要:Existing color editing algorithms enable users to edit the colors in an image according to their own aesthetics.Unlike artists who have an accurate grasp of color,ordinary users are inexperienced in color selection and matching,and allowing non-professional users to edit colors arbitrarily may lead to unrealistic editing results.To address this issue,we introduce a palette-based approach for realistic object-level image recoloring.Our data-driven approach consists of an offline learning part that learns the color distributions for different objects in the real world,and an online recoloring part that first recognizes the object category,and then recommends appropriate realistic candidate colors learned in the offline step for that category.We also provide an intuitive user interface for efficient color manipulation.After color selection,image matting is performed to ensure smoothness of the object boundary.Comprehensive evaluation on various color editing examples demonstrates that our approach outperforms existing state-of-the-art color editing algorithms.

关 键 词:color editing object recognition color palette representation natural color 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象