检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈扬钊 袁伟娜[1] CHEN Yang-zhao;YUAN Wei-na(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
机构地区:[1]华东理工大学信息科学与工程学院,上海200237
出 处:《浙江大学学报(工学版)》2022年第4期816-822,共7页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(61501187)。
摘 要:针对上行免调度非正交多址接入(NOMA)场景中多用户检测的问题,通过结合传输数据的符号特征,提出基于深度神经网络(DNN)的联合活跃用户检测和数据检测框架.考虑更一般化的实际场景,即用户在每个时隙中随机活跃.将DNN求解结果作为改进的正交匹配追踪(OMP)算法先验输入,修正提升活跃用户检测和数据检测性能.仿真结果表明,提出的多用户检测方案比传统的贪婪追踪及动态压缩感知(DCS)多用户检测算法具有更好的用户活跃性及数据检测性能.A joint active user detection and data detection framework based on deep neural network(DNN)was proposed by combining the symbolic features of transmitted data in order to solve the problem of multi-user detection in uplink grant-free non-orthogonal multiple access(grant-free NOMA).The more general and practical scenario was considered,in which the user was randomly active in each time slot.The DNN solution result was used as a priori input of the modified orthogonal matching pursuit(OMP)algorithm in order to improve the user detection and date detection performance.The simulation results show that the proposed multi-user detection scheme has better user activity and data detection performance than the traditional greedy tracking algorithm and dynamic compressed sensing(DCS)multi-user detection algorithm.
关 键 词:大规模机器通信 免调度传输 非正交多址接入 压缩感知 深度神经网络
分 类 号:TN929[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4