检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪俊红[1] 马铭阳 崔铁军[1] 昌润琪 JI Junhong;MA Mingyang;CUI Tiejun;CHANG Runqi(College of Safety Science and Engineering,Liaoning Technical University,Huludao Liaoning 125000,China)
机构地区:[1]辽宁工程技术大学安全科学与工程学院,辽宁葫芦岛125000
出 处:《中国安全生产科学技术》2022年第3期131-136,共6页Journal of Safety Science and Technology
基 金:辽宁省教育厅基金项目(LJ2019JL016)。
摘 要:为防治矿井热害,针对矿井井底风温在预测过程中精度较低的问题,提出1种网格搜索法结合K折交叉验证优化XGBoost的预测模型。通过分析确定影响井底风温的主要因素,使用网格搜索算法结合K折交叉验证,进行迭代缩小搜索范围并调参,选取最优参数配置,实现对XGBoost模型的优化,得到预测结果并与其他模型进行比较。研究结果表明:初始参数经优化后,当最大回归树深度为3且学习速率为0.1时,XGBoost回归模型性能最佳,与随机森林模型、BP神经网络模型、T-S模糊神经网络模型相比,平均相对误差分别降低了2.12%,0.88%,0.3%,均方根误差分别降低了0.66,0.24,0.11℃。In order to prevent the thermal hazard in the mine,aiming at the problem of the low accuracy in predicting the wind temperature at the well bottom of mine,a prediction model by using the grid search method combined with the K-fold cross-validation to optimize the XGBoost was proposed.The main factors affecting the wind temperature at the well bottom were determined through the analysis,then the grid search algorithm combined with the K-fold cross-validation were used to conduct the iteration to narrow the search range and adjust the parameters.The optimal parameter configuration was selected to realize the optimization of the XGBoost model,and the prediction results were obtained and compared with those of other models.The results showed that after the optimization of initial parameters,when the maximum regression tree depth was 3 and the learning rate was 0.1,the XGBoost regression model had the best performance.Compared with the random forest model,BP neural network model and T-S fuzzy neural network model,the average relative error was reduced by 2.12%,0.88%and 0.3%,respectively,and the root mean square error was reduced by 0.66℃,0.24℃and 0.11℃,respectively.
关 键 词:XGBoost回归模型 风温预测 网格搜索 参数寻优
分 类 号:X936[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.1.194