检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:古天龙 李龙[1,2] 常亮 罗义琴[1] GU Tian-Long;LI Long;CHANG Liang;LUO Yi-Qin(College of Information Science and Technology,Jinan University,Guangzhou 510632;Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004)
机构地区:[1]暨南大学信息科学技术学院,广州510632 [2]桂林电子科技大学广西可信软件重点实验室,广西桂林541004
出 处:《计算机学报》2022年第5期1018-1051,共34页Chinese Journal of Computers
基 金:国家自然科学基金(U1711263,U1811264,61966009)资助。
摘 要:随着人工智能的发展,机器学习技术越来越多地应用于社会各个领域,用以辅助或代替人们进行决策,特别是在一些具有重要影响的领域,例如,信用程度评级、学生质量评估、福利资源分配、疾病临床诊断、自然语言处理、个性信息推荐、刑事犯罪判决、无人驾驶等.如何在这些应用中确保决策公平或者无偏见?如何在这些应用中保护弱势群体的利益?这些问题直接影响到社会和公众对机器学习的信任,影响到人工智能技术的应用与系统的部署.通过系统梳理和全面剖析近年来的工作,对机器学习公平性或公平机器学习的定义及度量进行了解释及对比;从机器学习的全生命周期出发,对不同环节中出现的各类偏见及其发现技术进行了归类及阐释;从预处理、中间处理和后处理三个阶段,对公平机器学习的设计技术进行了介绍和分析;从可信赖人工智能全局出发,对公平性与隐私保护、可解释性之间的关系、影响及协同解决方案进行了阐述;最后对公平机器学习领域中亟待解决的主要问题、挑战及进一步研究热点进行了讨论.With the development of artificial intelligence,machine learning techniques is increasingly used in many social domains to assist or replace humankinds in decision-making,especially in some critical areas,such as,credit rating,students’qualification evaluation,welfare resource allocation,clinical diagnosis,natural language processing,personalized information recommendation,criminal judgment,autonomous vehicles and so on.Due to the intrinsic and technical characteristics of machine learning itself,its prediction and decision-making will inevitably produce a certain degree of bias or unfairness,which has gradually attracted the attention of scientific research,industry practitioners and the public.How to ensure fair or unbiased decisions in machine learning?How to protect the interests of disadvantaged groups in these applications?These issues have important impacts on the society and the public’s confidence in machine learning and affect the application of artificial intelligence technology and the deployment of artificial intelligence systems.Fairness has been one of the basic supporting capabilities of trustworthy artificial intelligence,and machine learning with fairness is referred to as fair machine learning.In this paper,the concepts of fairness,the methods of discovering unfair or biased discrimination and the design techniques of fair machine learning are reviewed and discussed.The detailed contents include the followings.Firstly,discrimination and bias are terminologies related to unfairness,and unfair behavior is known as biased behavior or discriminatory behavior.Since the taxonomy of discrimination and biases is helpful to understand and evaluate the fairness,direct discrimination,indirect discrimination,interpretable discrimination,uninterpretable discrimination,statistical discrimination and systematic discrimination are explained.In the framework of statistics,similarity and causal inference,the definitions and quantification of fairness in machine learning are categorized and explained.Secondly
关 键 词:机器学习 公平性 隐私保护 可解释 人工智能伦理
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222