Amine-immobilized HY zeolite for CO_(2) capture from hot flue gas  被引量:4

在线阅读下载全文

作  者:Wanqiao Liang Jihuan Huang Penny Xiao Ranjeet Singh Jining Guo Leila Dehdari Gang Kevin Li 

机构地区:[1]Department of Chemical Engineering,The University of Melbourne,Parkville,Victoria 3010,Australia

出  处:《Chinese Journal of Chemical Engineering》2022年第3期335-342,共8页中国化学工程学报(英文版)

摘  要:Solid amine-based adsorbents were widely studied as an alternative to liquid amine for post-combustion CO_(2)capture(PCC).However,most of the amine adsorbents suffer from low thermal stability and poor cyclic regenerability at the temperature of hot flue gases.Here we present an amine loaded proton type Y zeolite(HY)where the amines namely monoethanolamine(MEA)and ethylenediamine(ED)are chemical immobilized via ionic bond to the zeolite framework to overcome the amine degradation problem.The MEA and ED of 5%,10%and 20%(mass)concentration-immobilized zeolites were characterized by X-ray diffraction,Fourier-transform infrared spectroscopy,and N_(2)-196℃ adsorption to confirm the structure integrity,amine functionalization,and surface area,respectively.The determination of the amine loading was given by C,H,N elemental analysis showing that ED has successfully grafted almost twice as many amino groups as MEA within the same solvent concentration.CO_(2)adsorption capacity and thermal stability of these samples were measured using thermogravimetric analyser.The adsorption performance was tested at the adsorption temperature of 30,60 and 90℃,respectively using pure CO_(2)while the desorption was carried out with pure N_(2)purge at the same temperature and then followed by elevated temperature at 150℃.It was found that all the amine@HY have a substantial high selectivity of CO_(2)over N_(2).The sample 20%ED@HY has the highest CO_(2)adsorption capacity of1.76 mmol·g^(-1)at 90℃ higher than the capacity on parent Na Y zeolite(1.45 mmol·g^(-1)only).The amine@HY samples presented superior performance in cyclic thermal stability in the condition of the adsorption temperature of 90℃ and the desorption temperature of 150℃.These findings will foster the design of better adsorbents for CO_(2)capture from flue gas in post-combustion power plants.

关 键 词:Zeolite HY Amine-immobilization CO_(2)capture Monoethanolamine(MEA) Ethylenediamine(ED) Adsorption 

分 类 号:O647.33[理学—物理化学] X701[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象