基于多小波变换和奇异值分解的声发射信号降噪方法  被引量:1

Noise Reduction Method of Acoustic Emission Signal Based on Multi-wavelet Transform and Singular Value Decomposition

在线阅读下载全文

作  者:李云飞[1] 苏文胜[1] 刘彬彬 张洪 Li Yunfei;Su Wensheng;Liu Binbin;Zhang Hong(Special Equipment Safety Supervision Inspection of Jiangsu Province,Wuxi Branch,Wuxi 214174;Jiangnan University,Wuxi 214122)

机构地区:[1]江苏省特种设备安全监督检验研究院无锡分院,无锡214174 [2]江南大学,无锡214122

出  处:《中国特种设备安全》2022年第3期17-20,45,共5页China Special Equipment Safety

基  金:省局科技项目“基于超声导波的起重机复杂结构在线监测关键技术研究及示范应用”(KJ196043)。

摘  要:为了提高起重机故障诊断的准确率,本文将多小波变换(MWT)和奇异值分解(SVD)进行结合,提出了一个回转支承声发射信号降噪新方法.本文采用MWT对声发射信号进行多层次分解,并用SVD算法进行处理,提高了声发射信号的可识别度.最后,采用仿真信号和真实回转支承声发射信号进行测试,结果表明本文所用方法可以有效地去除信号中的噪声,提高信号的可分离程度,使回转支承的检测具有更高的诊断精度.In order to improve the accuracy rate of crane slewing bearing fault diagnosis,this paper combines multi-wavelet transform(MWT)and singular value decomposition(SVD),and proposes a new slewing bearing acoustic emission signal noise reduction method.Multi-wavelet transform is used to decompose the acoustic emission signal at multiple levels,and the singular value decomposition algorithm is used for processing,which improves the recognizability of the acoustic emission signal.Finally,the simulation signal and the real acoustic emission signal of the slewing ring are used for testing.The results show that the method used in this paper can effectively remove the noise in the signal,improve the signal separation degree and improve the slewing ring fault diagnosis ability.

关 键 词:起重机 回转支承 奇异值分解 声发射 

分 类 号:X943[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象