基于等效磁网络法的混合励磁双定子磁悬浮开关磁阻电机建模研究  被引量:1

Research on Modeling of Hybrid Excitation Double-Stator Bearingless Switched Reluctance Motor Based on Equivalent Magnetic Network Method

在线阅读下载全文

作  者:张志友 项倩雯[1] 孙玉坤[1] 袁野[1] ZHANG Zhiyou;XIANG Qianwen;SUN Yukun;YUAN Ye(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学电气信息工程学院,江苏镇江212013

出  处:《电机与控制应用》2022年第3期40-47,共8页Electric machines & control application

基  金:国家自然科学基金项目(51877101);江苏省重点研发计划项目(BE2021094)。

摘  要:提出了一种混合励磁双定子磁悬浮开关磁阻电机(BSRM)的等效磁网络模型,此模型可以分析电机悬浮和转矩绕组的磁链、电感及悬浮力和转矩等静态特性。等效磁网络法(EMN)不仅能保证一定的精度,而且比有限元法(FEM)节省时间。基于一种24/16/8极混合励磁双定子BSRM建立EMN模型,推算出电机定转子齿部、轭部以及气隙磁导的计算公式。建立矩阵方程,求解出各部分的磁通密度,进而求出悬浮和转矩绕组的磁链、电感以及悬浮力和转矩特性,和FEM求解的结果进行对比。可以发现EMN模型求解出的电磁特性和FEM分析的结果吻合效果很好,进一步证明了所建模型的有效性。An equivalent magnetic network model for hybrid excitation double-stator bearingless switched reluctance motor(BSRM) is presented. This model can analyze the static characteristics of motor suspension and torque windings, such as flux linkage, inductance, suspension force and torque. Equivalent magnetic network(EMN) can not only ensure certain precision, but also save time compared with finite element method(FEM). An EMN model is established based on a 24/16/8 hybrid excitation double-stator BSRM, and the calculation formulas of stator and rotor tooth, yoke and air gap magnetic conductivity are deduced. The matrix equation is established to solve the magnetic flux density of each part, and then the flux linkage, inductance, suspension force and torque characteristics of suspension and torque windings are obtained, which are compared with the results of FEM. It can be found that the electromagnetic characteristics solved by EMN agree well with the results of FEM, which further indicates the validity of the model.

关 键 词:磁悬浮开关磁阻电机 混合励磁 等效磁网络 有限元法 气隙分割 

分 类 号:TM352[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象