检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hui Liang
机构地区:[1]School of Science,Harbin Institute of Technology,Shenzhen,518055,China
出 处:《Numerical Mathematics(Theory,Methods and Applications)》2022年第1期91-124,共34页高等学校计算数学学报(英文版)
基 金:supported by the National Nature Science Foundation of China(No.12171122,11771128);the Fundamental Research Project of Shenzhen(No.JCYJ20190806143201649);Project(HIT.NSRIF.2020056);the Natural Scientific。
摘 要:Collocation and Galerkin methods in the discontinuous and globally continuous piecewise polynomial spaces,in short,denoted as DC,CC,DG and CG methods respectively,are employed to solve second-kind Volterra integral equations(VIEs).It is proved that the quadrature DG and CG(QDG and QCG)methods obtained from the DG and CG methods by approximating the inner products by suitable numerical quadrature formulas,are equivalent to the DC and CC methods,respectively.In addition,the fully discretised DG and CG(FDG and FCG)methods are equivalent to the corresponding fully discretised DC and CC(FDC and FCC)methods.The convergence theories are established for DG and CG methods,and their semi-discretised(QDG and QCG)and fully discretized(FDG and FCG)versions.In particular,it is proved that the CG method for second-kind VIEs possesses a similar convergence to the DG method for first-kind VIEs.Numerical examples illustrate the theoretical results.
关 键 词:Volterra integral equations collocation methods Galerkin methods discontinuous Galerkin methods convergence analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143