检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾真[1] 王为国[2] 罗旌崧 覃远航[2] 王存文[2] 赵子傲 ZENG Zhen;WANG Weiguo;LUO Jingsong;QIN Yuanhang;WANG Cunwen;ZHAO Ziao(School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China;Key Laboratory of Green Chemical Process(Wuhan Institute of Technology),Ministry of Education,Hubei Key Laboratory of Novel Reactor and Green Chemical Technology(Wuhan Institute of Technology),Wuhan 430205,China)
机构地区:[1]武汉工程大学机电工程学院,湖北武汉430205 [2]武汉工程大学化工与制药学院,教育部绿色化学过程教育部重点实验室(武汉工程大学),湖北省新型反应器与绿色化学工艺重点实验室(武汉工程大学),湖北武汉430205
出 处:《武汉工程大学学报》2022年第2期134-142,共9页Journal of Wuhan Institute of Technology
基 金:湖北省教育厅科研项目(2003A01)。
摘 要:为了完善间歇精馏过程的模拟技术,研究了模拟间歇精馏过程的数值计算误差及其相对稳定定量方法。采用拟稳态法模拟理想条件下恒馏出液组成操作常规二元间歇精馏过程,总汽化量数值计算结果的误差是截断误差、舍入误差和传播误差的耦合。根据大数定律,提出了理论板有限时,总汽化量数值计算结果误差的近似计算方法,及提出了采用拟合法计算Richardson外推法的误差系数。拟合法通过拟合足够多组总汽化量的数值计算结果和相应的过程离散段数计算误差系数,有效降低了(或消除)随机误差(舍入误差和传播误差)对计算误差系数的影响,提高了Richardson外推法估计截断误差的准确(稳定)性。To improve the simulation technology of batch distillation process,the numerical calculation errors of simulating batch distillation process and its relatively stable quantitative method were studied.The quasi steady-state method was used to simulate the process of conventional binary batch distillation with constant distillate composition operation under ideal conditions.The errors of the numerical calculation result of the total vaporization are the coupling of truncation errors,rounding errors and propagation errors.According to the law of large numbers,an approximate calculation method for the errors of the numerical calculation results of the total vaporization was proposed when the number of theoretical plates was limited,and a fitting method was proposed to calculate the error coefficient of Richardson's extrapolation method.The fitting method of calculating the error coefficients by fitting enough sets of the numerical calculation results of the total vaporization and the corresponding number of discrete segments of the process effectively reduces(or eliminates)the influence of random errors(rounding errors and propagation errors)on the calculation of the error coefficients,and improves the accuracy(stability)of Richardson's extrapolation method for estimating the truncation errors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49