检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖鑫 黎懿熠 欧阳军林[2] 周江盟 戴湘桃 秦拯 LIAO Xin;LI Yiyi;OUYANG Junlin;ZHOU Jiangmeng;DAI Xiangtao;QIN Zheng(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China;School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;School of Physics and Electronics,Central South University,Changsha 410083,China;Great Wall Information Co.,Ltd,Changsha 410199,China)
机构地区:[1]湖南大学信息科学与工程学院,湖南长沙410082 [2]湖南科技大学计算机科学与工程学院,湖南湘潭411201 [3]中南大学物理与电子学院,湖南长沙410083 [4]长城信息股份有限公司,湖南长沙410199
出 处:《湖南大学学报(自然科学版)》2022年第4期18-25,共8页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(61972142,61772191,U20A20174);国家社会科学基金资助项目(21BXW077);湖南省重点研发计划项目(2019WK2072);湖南省自然科学基金资助项目(2020JJ4212,2021JJ30277)。
摘 要:隐写是隐蔽通信的主流方法之一,而移动端则是当下最常用的通信设备,二者的结合研究具有较高的实际意义.近年来,基于深度学习的隐写方法得到快速发展,然而在性能提升的同时,各类网络结构向着更复杂、庞大的方向演变,逐渐脱离以隐蔽通信为核心的实际应用场景,实用性较低.针对这一现象,本文提出一种适用于移动端的轻量级图像隐写方法.对网络整体进行轻量化设计,结合深度可分离卷积降低模型计算量,在精度和速度之间取得较好的折中平衡.以生成对抗网络的思想,将编码器、解码器和判别器构成的整体模型纳入对抗训练中,使子网络在迭代对弈中实现螺旋式上升发展.为应对真实环境下的各类挑战,模型被落地部署于移动设备上进行真机实验.在移动端,精简后的模型性能会出现小幅下降.对此,在方法中引入BCH纠错码以确保正确提取信息.实验结果表明,该移动端隐写方法生成图像质量好,且具有较高的响应速度,能满足现代社会中人们对便捷性的高要求.值得注意的是,该方法的所有计算工作均可在移动端独立完成,不需要通过网络请求服务器,能避免网络窃听攻击.Steganography is one of the main methods for covert communication,while mobile phones are the most commonly used communication devices.The combination of the two has high practical significance.In recent years,steganography has developed rapidly with deep learning technologies.To improve the performance,networks evolve towards a more complex and large style,which gradually deviates from the real world scenarios with covert communication as the core,resulting in low practicability.For convenience and efficiency,a lightweight image steg⁃anography method is proposed for mobile phone.The network structure is designed in a light style,with depthwise separable convolutions utilized to reduce useless parameters and keeping a balance between accuracy and speed.Based on generative adversarial networks,the proposed method consists of a generator,a decoder,and a discrimina⁃tor,which are trained together defiantly and finally advance in a spiral upward trend.To deal with various challenges in the real world,the model is deployed on mobile phones for tests.The networks used on smartphones are pruned,which indicates performance degradation.To ameliorate this problem and enhance decoding accuracy,BCH correct⁃ing codes are used in the method.The results show that the method can generate high-quality images with high speed,which meets the convenience requirements in today’s world.Besides,it’s worth noting that the method works without online requests.All the embedding and extracting tasks can be done by phone itself,which means this scheme is immune to eavesdropping attacks.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249