基于多特征融合的疲劳驾驶状态识别方法研究  被引量:12

Research on Fatigue Driving State Recognition Method Based on Multi-feature Fusion

在线阅读下载全文

作  者:胡峰松 程哲坤 徐青云 彭清舟 全夏杰 HU Fengsong;CHENG Zhekun;XU Qingyun;PENG Qingzhou;QUAN Xiajie(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)

机构地区:[1]湖南大学信息科学与工程学院,湖南长沙410082

出  处:《湖南大学学报(自然科学版)》2022年第4期100-107,共8页Journal of Hunan University:Natural Sciences

基  金:赛尔网络下一代互联网技术创新项目(NGII20161009)。

摘  要:针对交通安全中疲劳驾驶状态识别问题,使用单一的疲劳驾驶特征的方法识别率较低,本文提出一种基于面部多特征加权和的疲劳识别方法.通过人眼状态检测算法提取眼部疲劳参数,即持续闭眼时间、闭眼帧数比、眨眼频率,通过打哈欠状态检测得到打哈欠次数和打哈欠持续时间,通过头部运动状态分析得到点头频率,建立融合以上六个特征的驾驶疲劳状态检测模型来评估驾驶员的疲劳等级并进行相应的预警.实验测试数据选自NTHU驾驶员疲劳检测视频数据集的部分数据.经实验调整后,发现该方法的识别准确率较高,识别效果好.Aiming at the problem of fatigue driving state recognition in traffic safety,the recognition rate of using a single fatigue driving feature is low.This paper studies and proposes a fatigue recognition method based on the weighted sum of facial multi-features.The eye fatigue parameters,such as continuous eye closing time,eye closing frame ratio and blink frequency,are extracted by human eye state detection algorithm.The number and duration of yawning are obtained through yawning state detection,the nodding frequency is obtained through head motion state analysis,and a driving fatigue state detection model integrating the above six characteristics is established to evaluate the driver’s fatigue level and give the corresponding early warning.The experimental test data are selected from part of the NTHU driver fatigue detection video data set.After experimental adjustment,it is found that this method has high recognition accuracy and provide a good recognition effect.

关 键 词:驾驶安全 特征点定位 眨眼状态识别 多特征融合 疲劳识别 

分 类 号:N39[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象