检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:甘润东 沈舒尹 张宇哲 GAN Rundong;SHEN Shuyin;ZHANG Yuzhe(College of Software,Nankai University,Tianjin 300450,China)
出 处:《数据与计算发展前沿》2022年第2期29-38,共10页Frontiers of Data & Computing
基 金:国家重点研发计划(2021YFB0300104)。
摘 要:【目的】在深度学习框架中,为了实现大规模深度学习计算,异构的OpenCL计算模型通过充分利用不同厂商生产的不同类型硬件设备和计算资源成为提升学习效率的重要途径。因此将深度学习框架例如MXNet等迁移至OpenCL计算模型上以提高其对大规模深度学习的适配性。在对MXNet深度学习框架的迁移过程中,深度学习计算中较为普遍的多维线性数据处理相关操作的迁移则是本文需要讨论的主要问题。【方法】通过系统地比较CUDA计算模型和OpenCL计算模型的运行机制,将已兼容CUDA计算模型的MXNet深度学习框架中对多维线性数据处理的逻辑基于OpenCL计算模型进行适配性重构。【结果】通过基于OpenCL计算模型进行适配性重构的MXNet深度学习计算框架中的有关多维线性数据处理的计算操作能够通过已有的框架测试。【结论】基于OpenCL计算模型进行适配性重构方案能够很好地解决MXNet深度学习框架迁移至OpenCL计算模型时较为普遍的多维线性数据处理相关操作的迁移问题。[Objective]In the deep learning framework,in order to realize large-scale deep learning computing,the heterogeneous OpenCL computing model has become important to improve learning efficiency by making full use of different types of hardware devices and computing resources produced by different manufacturers.Therefore,deep learning frameworks such as MXNet are migrated to the OpenCL computing model to improve their adaptability to large-scale deep learning.In the process of migrating the MXNet deep learning framework,the migration of operations related to multi-dimensional linear data processing,which is common in deep learning computing,is the main issue discussed in this paper.[Methods]By systematically comparing the operating mechanisms of the CUDA computing model and the OpenCL computing model,the logic of multi-dimensional linear data processing in the MXNet deep learning framework compatible with the CUDA computing model is reconstructed based on the OpenCL computing model.[Results]The computing operations related to multi-dimensional linear data processing in the MXNet deep learning computing framework based on the OpenCL computing model for adaptive reconstruction can pass the existing framework tests.[Conclusions]The adaptive reconstruction scheme based on the OpenCL computing model can well solve the common migration problem of multi-dimensional linear data processing related operations when the MXNet deep learning framework is migrated to the OpenCL computing model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170