基于FPGA的视频实时目标检测方法研究  被引量:2

Research on real-time FPGA-based video target detection method

在线阅读下载全文

作  者:陈朋 何建彬 陈诺 俞天纬 宦若虹[1] CHEN Peng;HE Jianbin;CHEN Nuo;YU Tianwei;HUAN Ruohong(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023;College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023)

机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023 [2]浙江工业大学信息工程学院,杭州310023

出  处:《高技术通讯》2022年第3期239-247,共9页Chinese High Technology Letters

基  金:国家自然科学基金(U1909203);浙江省自然科学基金(LY19F020032);浙江省属高校基本科研业务费专项资金(RF-C2019001)资助项目。

摘  要:针对实时目标检测网络在图形处理器(GPU)加速器上实时性低、功耗高和成本高等问题,本文提出了一种结合通道注意力机制与深度可分离卷积的神经网络模型(At DS-SSD),并将该网络在现场可编程门阵列(FPGA)上进行优化与部署。At DS-SSD网络在SSD模型基础上,将VGG 16特征提取网络部分替换成以深度可分离卷积为主体的MobileNet网络,并加入通道注意力模块。本文采用8位的定点量化方法,对网络模型参数进行量化。最后,本文将量化后的At DS-SSD网络模型在ZCU 102平台上进行部署,并采用PASCAL VOC数据集进行测试。在平均精度均值只损失0.58%的情况下,加速器性能从85 fps提升到311.7 fps,测试功耗相当于NVIDIA RTX 2080Ti的11%。实验数据表明,基于FPGA平台结合注意力机制和深度可分离卷积的网络模型,可以提升计算实时性并降低功耗,减少网络复杂度降低导致的精度损失,从而验证了本文方法的有效性。In order to solve the problems of low real-time performance, high power consumption and high cost of real-time target detection network on graphics processing unit(GPU) accelerators, a neural network model named attentionbased depthwise seperable single shot multibox detector(AtDS-SSD) that combines channel attention mechanism and depthwise separable convolution is proposed, and the network is optimized and deployed on field programmable gate array(FPGA). Based on the SSD model, the At DS-SSD network adds an attention module, and replaces the VGG 16 network with the MobileNet network which is mainly composed of depthwise separable convolution. An 8-bit fixed-point quantization method is used to quantify the network model parameters. The quantified At DS-SSD network model is deployed on the ZCU 102 platform and tested by using the PASCAL VOC data set. The accelerator performance has increased from 85 fps to 311. 7 fps, and the power consumption is equivalent to 11% of NVIDIA RTX 2080Ti, with only 0. 58% drop of meanaverage precision. The experimental results show that the FPGA platform combined with the attention mechanism and the depthwise separable convolution network model can improve the real-time performance, reduce the power consumption, and reduce the accuracy loss caused by the reduction of network complexity, which verifies the effectiveness of the method proposed in this paper.

关 键 词:SSD网络 通道注意力机制 深度可分离卷积 现场可编程门阵列(FPGA) 定点量化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象