基于多尺度残差视觉信息融合的牧场牛只数量估计方法  

Cattle counting estimation method based on multi-scale residual visual information fusion

在线阅读下载全文

作  者:杨武[1] 王颖慧 谈耀 冯欣[1] Yang Wu;Wang Yinghui;Tan Yao;Feng Xin(School of Computer Science&Engineering,Chongqing University of Technology,Chongqing 400054,China)

机构地区:[1]重庆理工大学计算机科学与工程学院,重庆400054

出  处:《计算机应用研究》2022年第5期1590-1594,共5页Application Research of Computers

基  金:重庆市基础研究与前沿探索项目(重庆市自然科学基金)(cstc2018jcyjAX0287);重庆理工大学教育创新计划资助项目(clgycx20202092)。

摘  要:由于牧场牛只分布不均以及尺度变化大,传统的目标计数算法在畜牧领域计数精度不高,且用于研究的牛只数据集较少。针对这些问题创建了一个用于牛只密度估计的数据集,并提出了一种基于多尺度残差视觉信息融合的牧场牛只数量估计方法。该方法利用多个并列且空洞率不同的空洞卷积提取牛只目标的多尺度特征,并将残差结构与小空洞率卷积相结合,设计出更适合牛只活体计数的深度神经网络,从而缓解了由空洞卷积带来的网格效应的影响,同时能更好地适应牛只的多尺度变化。在牛只密度数据集中,该方法取得了最低的平均绝对误差(MAE)和均方根误差(RMSE)。此外,在密集人群数据集中,该方法的MAE和RMSE也属于最优或次优结果。实验结果表明,该方法不仅适用于牛只场景的数量估计,在人群密度估计中也有较高的准确性和鲁棒性。Due to the uneven distribution and large scale-variation range of living cattle,the accuracy of traditional object counting algorithm is not high in living-animal field,and there are few cattle data sets used for research.To solve these pro-blems,this paper established a dataset for cattle density estimation,and proposed a cattle counting estimation method based on multi-scale residual visual information fusion.This method used multiple parallel dilate convolution with different dilate rates to extract multi-scale features of cattle,and combined residual structure with small dilate rate convolution to design a deep neural network more suitable for living cattle object counting,thus eased the effect of grid effect caused by dilate convolution and better adapt to the multi-scale changes of cattle.The proposed method achieved the lowest mean absolute error(MAE)and root mean square error(RMSE)on the cattle density data set.In dense counting data sets,the MAE and the RMSE of the proposed method also achieved the optimal or suboptimal results.The experimental results show that the proposed method is not only suitable for the number estimation of cattle scene,but also has high accuracy and strong robustness in population density estimation.

关 键 词:智慧农牧 密度估计 深度学习 牛数量估计 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象