基于大数据关联性分析的新能源网络边界协同防护技术  被引量:2

Collaborative Prevention Technology of New Energy Network Boundary Based on Big Data Correlation Analysis

在线阅读下载全文

作  者:张晓东 刘俊 夏琨 ZHANG Xiaodong;LIU Jun;XIA Kun(State Grid Ningxia Marketing Service Center(State Grid Ningxia Metrology Center),Yinchuan Ningxia 750021,China;State Grid Ningxia Information&Communication Company,Yinchuan Ningxia 750001,China)

机构地区:[1]国网宁夏电力有限公司营销服务中心(计量中心),宁夏银川750021 [2]国网宁夏电力有限公司信息通信公司,宁夏银川750001

出  处:《信息安全与通信保密》2022年第4期96-102,共7页Information Security and Communications Privacy

摘  要:随着能源互联网的发展,电力信息网络系统架构也在不断变化,使电力信息网络安全面临着新的挑战。研究基于网络流水印的多点协同追踪和多层次的网络威胁协同阻断技术,由此设计高效的水印嵌入和检测算法,通过节点的协同配合,实现对安全威胁的实时追踪,同时针对不同的安全威胁,设计多层次的连接干扰和网络阻断技术,实现网络威胁的弱化和阻断。提出了跨域协同入侵追踪架构,解决了跨域网络入侵路径的快速重构。提出了基于时隙质心网络流水印的跳板节点发现算法,解决了利用跳板机网络攻击的溯源分析问题。With the development of energy Internet, the system architecture of power information network is changing constantly, so the security of power information network is facing new challenges.This paper studies the multi-point collaborative tracking and multi-level network threat synergy blocking technology based on network running water seal, and designs an efficient watermarking embedding and detecting algorithm. Through the cooperation of nodes, it realizes the real time tracking of security threats. At the same time, for different security threats, this paper designs multi-level connection interference and network blocking technology to weaken and block network threats. In this paper, a cross-domain cooperative intrusion tracing architecture is proposed to solve the rapid reconstruction of the intrusion path in cross-domain networks. A springboard node discovery algorithm based on time-slot centroid network flow printing is proposed to solve the problem of traceability analysis of network attacks using jumpers.

关 键 词:网络安全 网络流水印 入侵追踪 新能源网络 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象