检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘睿 莫愿斌[2,3] 荆彩 LIU Rui;MO Yuanbin;JING Cai(College of Electronic Information,Guangxi university for nationalities,Nanning 530006,Guangxi,China;Institute of artificial intelligence,Guangxi university for nationalities,Nanning 530006,Guangxi,China;Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,Nanning 530006,Guangxi,China)
机构地区:[1]广西民族大学电子信息学院,广西南宁530006 [2]广西民族大学人工智能学院,广西南宁530006 [3]广西混杂计算与集成电路设计分析重点实验室,广西南宁530006
出 处:《微电子学与计算机》2022年第4期65-74,共10页Microelectronics & Computer
基 金:国家自然科学基金项目(21466008);广西自然科学基金项目(2019GXNSFAA185017)。
摘 要:覆盖问题是无线传感器网络(Wireless Sensor Network,WSN)设计中的首要问题,尽可能优化区域覆盖率是提升网络感知性能的直接手段.鉴于此,提出一种基于改良型麻雀搜索算法(Reformative Sparrow Search Algorithm,RSSA)的节点部署优化方案.首先,在算法搜索阶段,RSSA通过引入正余弦指引机制替换原算法位置更新模式,改善算法的遍历性;其次,利用Lévy随机步长特性为算法加入停滞扰动机制,使RSSA具备更强的抗局部极值能力;同时,采用更为契合实际的概率感知模型检测节点的覆盖状态,在迭代更新过程中对比替换更优节点集,从而获得区域覆盖率的提升.为验证改良算法的寻优效果,使用6组通用的基准函数对RSSA进行性能测试,并与三种不同算法进行对比,结果表明RSSA具有良好的优化性能.最后,将RSSA应用于两组WSN节点部署优化实例.对比不同文献中的覆盖优化算法,使用所提算法RSSA优化节点部署最高可取得99.99%的覆盖率,并且使区域内节点呈现均匀化分布,在保证较高覆盖率要求的同时使用了更少的节点,减少了节点冗余,降低了整体网络系统的部署成本.Coverage problem is the most important issue in the design of Wireless Sensor Network(WSN),optimizing regional coverage rate as much as possible is a direct means to improve network sensing performance.In view of this,a node deployment optimization scheme based on Reformative Sparrow Search Algorithm(RSSA) is proposed.Firstly,in the search phase,RSSA improves the ergodicity of the algorithm by introducing the sine cosine guidance mechanism to replace the location update mode of the original algorithm.Secondly,the stagnation disturbance mechanism is added to the algorithm by using the characteristics of Lévy random step size,so that RSSA has stronger ability to resist local extremum.At the same time,a more practical probability perception model is used to detect the coverage state of nodes,and a better node set is compared and replaced in the iterative update process,so as to improve the regional coverage.In order to verify the optimization effect of the reformative algorithm,six groups of general benchmark functions are used to test the performance of RSSA,and compared with three different algorithms.The results show that RSSA has good optimization performance.Finally,RSSA is applied to two groups of WSN node deployment optimization examples,and the coverage optimization algorithms in different literatures are compared.Using the proposed algorithm RSSA to optimize node deployment can achieve a maximum coverage of 99.99%,and make the nodes in the region present a uniform distribution.While ensuring high coverage requirements,fewer nodes are used,which reduces node redundancy and reduces the deployment cost of the overall network system.
关 键 词:无线传感器网络 节点部署 覆盖率 麻雀搜索算法 部署成本
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26