检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宏[1] 张玉伦 邓旭 徐梅 ZHANG Hong;ZHANG Yu-lun;DENG Xu;XU Mei(College of Computer Science&Technology,Harbin University of Science and Technology,Harbin Heilongjiang 150080,China)
机构地区:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080
出 处:《计算机仿真》2022年第4期150-155,共6页Computer Simulation
基 金:黑龙江省大学生创新创业训练计划项目(201710214011)。
摘 要:针对雾霾天气下采集的图像存在细节丢失和对比度较低的问题,提出了基于改进暗通道先验的图像去雾算法。现有的图像去雾算法仍然受到颜色失真和亮度偏暗的困扰。而改进算法首先通过四叉树搜索算法来估计大气光候选区域,提高了大气光值估计的准确性,降低了大气光候选区域定位在亮白色物体上导致去雾后的图像出现颜色失真的情况。其次,将去雾后图像转为HSI颜色空间,对亮度进行限制对比度自适应直方图均衡化处理,有效的改善了去雾后图像亮度偏暗的问题,并且更加凸显图像的细节。最后,在真实有雾图像上的实验结果表明,改进算法具有较好的去雾效果并且亮度更自然。To solve the problems of detail loss and low contrast in images collected under haze weather, an image dehazing algorithm based on improved dark channel prior is proposed. The existing image dehazing algorithms still suffer from color distortion and dark brightness. The improved algorithm estimates the candidate regions of atmospheric light by the quadtree search algorithm, which improves the accuracy of atmospheric light value estimation and reduces the atmospheric light candidate regions fall on bright white objects, resulting in color distortion in the dehazed results. In addition, the dehazed image was transformed into HSI color space, and the brightness I was processed with contrast limited adaptive histogram equalization. This effectively improves the dark brightness problem of the dehazed image and highlights the details. Finally, the experimental results on real hazy images show that the proposed algorithm has a better dehazing effect and more natural brightness.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28