检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾剑红 杨玲玲 刘安安 庞代文 JIA Jianhong;YANG Lingling;LIU An’an;PANG Daiwen(State Key Laboratory of Medicinal Chemical Biology,College of Chemistry,Research Center for Analytical Science,Tianjin Key Laboratory of Biosensing and Molecular Recognition,Nankai University,Tianjin 300071,China;The Institute for Advanced Studies,College of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072,Hubei,China)
机构地区:[1]南开大学药物化学生物学国家重点实验室,化学学院分析科学研究中心,天津市生物传感及分子识别重点实验室,天津300071 [2]武汉大学高等研究院,化学与分子科学学院,湖北武汉430072
出 处:《合成生物学》2022年第2期385-398,共14页Synthetic Biology Journal
基 金:国家自然科学基金(91859123);国家重点研发计划(2019YFA0210103);中央高校基本科研业务费专项(63201024);天津市自然科学基金(19JCQNJC02400)。
摘 要:细胞是生命活动的基本单位。随着材料学、化学和生物学等多学科交叉日益加深,借助活细胞内代谢途径合成无机纳米材料的研究受到广泛关注,同时也拓展了合成生物学的研究领域。然而,活细胞合成无机纳米材料主要以胞内生物大分子为模板,且依赖单一生化反应途径,产物的尺寸、形貌和性质均难以人为调控。自2009年,本课题组通过人为设计、巧妙耦合活细胞内的硒代谢途径和重金属离子解毒途径,发展出“时-空耦合”活细胞合成策略,在真菌、细菌和哺乳动物细胞内原位合成了不同组成、尺寸和性能的无机半导体荧光纳晶(量子点)。在从物质和能量代谢的角度研究活细胞合成机理的基础上,将活细胞合成体系简化,设计构建了无细胞的准生物体系,成功合成了多种纳米材料,同时也验证了“时-空耦合”策略的正确性。本文将总结评述“时-空耦合”活细胞合成量子点的策略、机理及其在生物标记、生物成像和病原微生物与重金属离子检测等方面的应用,并简要介绍准生物体系。同时,将阐明目前活细胞合成策略面临的挑战。随着合成生物学的发展,通过“时-空耦合”活细胞合成策略可以将无机功能材料“自然地”融入生物体系,赋予生物体系超常的能力,拓展合成生物学。As fundamental units of structure and function in all living organisms,cells grow and proliferate through intracellular metabolism.The metabolism is characterized by catabolism,through which cells break down complex molecules to produce energy and reducing power,and anabolism,through which cells use energy and reducing power to construct complex molecules for biological functions.Due to the development of interdisciplinary research in materials science,chemistry and biology,many new ideas and concepts inspired by biological systems have been proposed to synthesize various inorganic nanomaterials.Some bacteria,such as magnetotactic bacteria,have evolved to be able to synthesize inorganic nanomaterials.On the other hand,some inorganic-based skeletal structures can be synthesized by harnessing specific biomolecules as templates and the metabolic functions of live cells,which is well known as biomineralization.However,metabolic pathways in live cells are extremely complicated,and it is difficult to elaborately trigger and simultaneously control the specific metabolic pathways for designed synthesis.To overcome this challenge,the“space-time coupling”strategy for controllable synthesis of quantum dots in live cells has been developed since 2009.By delicately coupling of intracellular selenite reduction metabolism and detoxification of heavy metal ions,quantum dots with different components and tunable sizes can be synthesized.This review focuses on the synthetic regulation,mechanism and biological applications of quantum dots in situ synthesized in live cells by the“space-time coupling”strategy.Subsequently,cell-free quasi-biological systems that are inspired by the live-cell synthesis and constructed by mimetic intracellular biochemical reaction pathways are briefly presented.Finally,challenges and prospects of this strategy are discussed.In the future,with more in-depth research on metabolomics,we believe that in addition to quantum dots,various inorganic nanomaterials with hierarchical structures and multifu
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.92.7