涉腐涉纪网络舆情的特征、分类及应对策略研究  

Research on the Characteristics,Classification and Response Strategies of Corruption and Discipline Related Online Public Opinions

在线阅读下载全文

作  者:黎春蕾 Li Chunlei

机构地区:[1]广东省广州市海珠区纪委

出  处:《廉政学研究》2022年第1期199-211,296,297,共15页Clean-Governance Study

摘  要:涉腐涉纪网络舆情具有敏感度高、态度倾向性强、传播传染力大、生命周期复杂等特点。本文根据舆情主体、舆情功能目的、舆情生命力三个发生学特征对G市H区2010~2019年的102个涉腐涉纪典型舆情案例进行统计分析,将其划分为“利益受损者网络发动模式”、“信息掌握者网络曝光模式”、“不法目的者网络炒作模式”和“时政关注者网络建言模式”四种发生模式,并提出如下建议:以提高涉腐涉纪网络舆情应对效率和效果为目的,打通涉腐涉纪网络舆情的安全阀、打造涉腐涉纪网格舆情高效处置链条、提升纪检监察部门-媒体/意见领袖信息通报共享的合作效应、形成机制制度与法治建设严密完整的长效体系。此外,本文还提出基于不同的发生模式有所侧重地强化舆情处置中的关键应对环节。Based on the analysis of 102 typical corruption and discipline related public opinion cases in District H of City G from 2010 to 2019 according to three occurrences of public opinion subject,public opinion function and purpose,and public opinion vitality,this paper finds that corruption-related and discipline-related online public opinions are characterized by high sensitivity,strong tendency attitude,great contagious power and complex life cycle,etc.,which can be divided into three modes:network initiation mode for those with damaged interests,the network exposure mode of those with information,the network mode of those with unlawful purposes and the network mode of those with current political concerns.Finally,that in order to improve the efficiency and effectiveness of the response to corruption and discipline related online public opinions,it is suggested to open up the safety valve of online public opinion related to corruption and discipline,to build an efficient disposal chain,to enhance the cooperative effect of information sharing with media/opinion leaders,and to form a long-term system with strict laws and regulations.Based on the different occurrence patterns,the paper puts forward to strengthen the key response links in public opinion disposal.

关 键 词:涉腐涉纪 网络舆情 动态监测 信息共享 

分 类 号:G20[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象