基于BP神经网络的有限特征参数砌体结构震害等级推演  被引量:4

BP neural network prediction of seismic damage level of masonry structures with finite characteristic parameters

在线阅读下载全文

作  者:施唯 王东明 SHI Wei;WANG Dongming(China Earthquake Disaster Prevention Center,Beijing 100029,China)

机构地区:[1]中国地震灾害防御中心,北京100029

出  处:《世界地震工程》2022年第2期160-168,共9页World Earthquake Engineering

基  金:中国地震局地震科技星火计划项目(XH19057Y)。

摘  要:详细的建筑结构特征参数是得到合理地震易损性分析结果的基础。本文给出了一种结合已有地震易损性分析成果,在具备有限特征参数的情况下,利用BP神经网络进行单体或群体结构震害等级推演的方法。以陕西省渭南市607栋设防砌体易损性评估结果为样本构建了一个3层BP神经网络模型,并对北京市海淀区近2万栋设防砌体不同地震烈度下的可能破坏状态进行推演,结果能够反映区域本地化特征,也与抗震设计目标和震害案例相符。该方法适用于少量特征参数下单体或群体结构的快速震害等级推演,可为相似烈度地区的建筑结构风险评估提供参考。Detailed structural parameters are the basis of reasonable seismic vulnerability analysis. A method is proposed to predict the seismic damage level of structures based on BP neural network with finite characteristic parameters. After seismic vulnerability analysis of 607 fortification masonry structures in Weinan city,training samples were selected for the construction of a three-layer BP neural network,and the possible failure states of nearly 20000masonry structures in Haidian District of Beijing have been predicted with the trained model. The results can reflect the localization characteristics of building structures,and also conform to the seismic design objectives and earthquake damage cases. The method can provide a reference for the earthquake damage prediction and risk prevention of building structures in similar intensity areas.

关 键 词:震害预测 易损性分析 设防砌体结构 神经网络 风险防治 

分 类 号:P315.9[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象