检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹莉 黄伶智[2] 邱华丽[2] 彭康琳[2] Cao Li;Huang Lingzhi;Qiu Huali;Peng Kanglin(Xiangya School of Nursing,Central South University,Changsha 410011,China)
机构地区:[1]中南大学湘雅护理学院,湖南长沙410011 [2]中南大学湘雅二医院临床护理学教研室
出 处:《护理学杂志》2022年第8期44-46,共3页Journal of Nursing Science
摘 要:目的探讨基于失效模型与效应分析的给药错误预警项目在护士长总值班质控中的应用效果。方法对给药错误进行根因分析,借鉴失效模型与效应分析,形成给药错误相关护理缺陷的红色预警和黄色预警并纳入护士长总值班重点督查内容,比较实施前后预警条目触发次数,预警条目的风险系数以及给药错误不良事件的情况。结果实施后,红黄预警触发次数显著高于实施前,5个预警条目的发生频次、3个条目探测度、7个条目风险系数显著减少(P<0.05,P<0.01),给药错误发生频次下降。结论给药错误相关护理缺陷红黄预警应用于护士长总值班中,能有效提高护士长总值班质控精准度,促进用药安全措施落实。Objective To explore the effect of applying a warning program for medication errors based on failure mode and effect analysis in quality inspection rounds performed by head nurses.Methods By analyzing the root cause of medication errors and learning from the failure model and effect analysis,we formed a red alert and yellow alert for medication errors and embedded then into key quality inspection contents for head nurses to make a quality inspection round.The counts of early warning triggers detected,risk coefficients of early warning items and the frequency of medication errors before and after implementation were compared.Results After the implementation of the warning program,the number of red and yellow warning triggers detected was significantly higher than before implementation,while the occurrence of 5 warning items,the detection of 3 items,the risk coefficients of 7 warning items were lower significantly(P<0.05,P<0.01),and the occurrence of medication errors had dropped.Conclusion The application of red-yellow early warning of medication errors in inspection rounds performed by head nurses can effectively improve the precision of inspection rounds and help implement of measures that can promote patient safety.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.171.249