检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高文超[1] 任圣博 田驰 赵珊珊 GAO Wenchao;REN Shengbo;TIAN Chi;ZHAO Shanshan(School of Mechanical Electronic&Information Engineering,China University of Mining&Technology,Beijing,Beijing 100083,China)
机构地区:[1]中国矿业大学(北京)机电与信息工程学院,北京100083
出 处:《计算机工程与应用》2022年第9期230-237,共8页Computer Engineering and Applications
基 金:国家自然科学基金(61774091);中央高校基本科研业务费专项(2020YQJD15);国家大学生创新训练项目(C202004828)。
摘 要:现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched multi-level generative adversial networks,带有辅助分类器的多层次结构生成对抗网络)用于动画人物头像生成。该网络模型由两个生成器和两个判别器堆叠而成,并在判别器中嵌入辅助分类器对生成结果进行约束,使生成样本方差变大,增加生成样本的多样性。为保证合成图像真实度和清晰度,引入特征图空间损失和图像像素空间均值方差损失以最小化合成数据和真实数据的距离。实验结果表明,多层次结构能够有效稳定训练过程,增加图像的边缘细节和局部纹理,同时辅助分类器有效解决模式崩溃问题,提高生成指定类别图像的准确率。ACM-GAN生成图像的FID分数达到27.96,相比于StackGAN++提升23.1%。The existing animation image generation methods have the problems of lack of diversity in synthetic images,unclear local textures,small sample variance,and difficulty in generating according to detailed descriptions.Based on the idea of StackGAN++,combined with auxiliary classifiers,this paper proposes an improved model ACM-GAN(auxiliary classification atteched multi-level generative adversial networks,a multi-level structure with auxiliary classifiers)for Anime character avatar generation.The network model is composed of two generators and two discriminators stacked,and the auxiliary classifier is used to constrain the generated results to increase the variance of the generated samples and increase the diversity of the generated samples.To ensure that the synthesized image is true,the loss of feature map space and the loss of image pixel space mean variance are introduced to minimize the distance between synthetic data and real data.The experimental results show that the multi-level structure can effectively stabilize the training process,increase the edge details and local texture of the image,and at the same time auxiliary classification effectively solve the pattern collapse problem,and improve the accuracy of generating images of the specified category.The FID score of the iamge generated by ACM-GAN reaches 27.96,which is an increase of 23.1% compared StackGAN++.
关 键 词:动画头像生成 生成对抗网络 多层次结构 辅助分类器
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117