出 处:《Geo-Spatial Information Science》2013年第2期83-90,共8页地球空间信息科学学报(英文)
基 金:This research is funded by Chinese National Natural Science Foundation(Grant No.41071267);Scientific Research Foundation for Returned Scholars,Ministry of Education of China([2012]940);the Science&technology department of Fujian province of China(Grant Nos.2012I0005,2012J01167);The authors would like to thank the Natural Environment Research Council of UK for the provision of the airborne remote sensing data.Part of the work for this study was carried out while Qiu Bingwen was a Visiting Scholar at the Department of Geography,University of Cambridge,England.The authors would like to acknowledge the advice of Robert Haining during her visit and to thank Ben Taylor and Gabriel Amable who kindly offered help in processing these datasets.
摘 要:Knowledge of spatio-spectral heterogeneity within multisensor remote sensing images across visible,near-infrared and short wave infrared spectra is important.Till now,little comparative research on spatio-spectral heterogeneity has been conducted on real multisensor images,especially on both multispectral and hyperspectral airborne images.In this study,four airborne images,Airborne Thematic Mapper,Compact Airborne Spectrographic Imager,Specim AISA Eagle and AISI Hawk hyperspectral airborne images of woodland and heath landscapes at Harwood,UK,were applied to quantify and evaluate the differences in spatial heterogeneity through semivariogram modelling.Results revealed that spatial heterogeneity of multisensor airborne images has a close relationship with spatial and spectral resolution and wavelength.Within the visible,near-infrared spectra and short wave infrared spectra,greater spatial heterogeneity is generally observed from the relatively longer wavelength in short wave infrared spectra.There are dramatic changes across the red and red edge spectra,and the peak value is generally examined in the red middle or red edge wavelength across the visible and near-infrared spectra for vegetation or non-vegetation landscape respectively.In all,for real multisensor airborne images,the change in spatial heterogeneity with spatial resolution will accord with the change of support theory depending on whether dramatic change exists across the corresponding wavelength.Besides,if with close spatial resolution,the spatial heterogeneity of multispectral images might be far from the overall integration of these bands from the hyperspectral images involved.A comparative assessment of spatio-spectral heterogeneity using real hyperspectral and multispectral airborne images provides practical guidance for designing the placement and width of a spectral band for different applications and also makes a contribution to the understanding of how to reconcile spatial patterns generated by multisensors.
关 键 词:variogram modelling spatio-spectral heterogeneity ATM CASI EAGLE Hawkairborne imagery multi-sensors
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...